A13-SOM-512 Android image for 4.3″ LCD with touchscreen released

A13-4.3-android

We got request from customer for Android image which supports 4.3″ LCD with touchscreen. He did his development with Beagle Bone, but wanted to optimize the cost for production so A13-SOM512 price was very attractive, but default Allwinner Android image although allow you to define smaller LCD resolutions has no working touchscreen calibration for small LCDs, also default Android screen was not set well and status bar was taking big portion of the screen.

Here is the newly released SD-card image for A13-SOM512 Android with 4.3″ LCD with touchscreen display.

A13-som-android

Now you can develop your embedded Andoid application on low cost board with small LCD.

New Universal System On Module in SO-DIMM 204 pin form factor

SOM204-EVB

We have now several SOMs for A13, A20, AM3352, RK3188.

Each of them with different layout and pinouts as our initial intention was to expose all possible features of every processor.

The experience we got from selling the SOMs for the past 5 years is that 99% of customers do not need all specific interfaces, but few common interfaces.
For instance very few customer need 12 UARTs and 6 I2C in their design, but almost all need Ethernet, HDMI, SATA etc.

Another important point is that soon or later the project they working on scale up and they need more memory or more processor power and with the current SOMs they have no option but redesign.

Every big customer need longevity assurance. They do not want to change their design every couple of years when the SOC manufacturer obsolete their processors, they do not want to re-design every 6 month when new processor with 4-6-8-10-12-24 cores appear to the market with preliminary buggy software support.

So with the years one another idea evolved – we should try to make one universal SOM layout with known interfaces on known pinout, so if customer need more memory he just switch to SOM with same pinout but more memory, if need more power he switch to SOM with same pinout but more powerful SOC.

We have experience with Allwinner, Rockchip and TI, so we considered these processors as potential new SOM SOCs:

A20, A64, RK3399, AM335X

After long discussions we decided that the universal SOM should have these signals:

  • USB-OTG
  • USB-HOST1
  • USB-HOST2
  • HSIC
  • USB3
  • PCIe
  • Ethernet1 Megabit/Gigabit
  • Ethernet2 Megabit/Gigabit
  • WiFi+BLE
  • SATA
  • SD-CARD
  • CAN
  • IR
  • CSI
  • HDMI
  • VGA
  • Audio In
  • Audio Out
  • SPDIF
  • UEXT1 -> SPI1, I2C1, UART1
  • UEXT2 -> SPI2, I2C2, UART2

     

The first SOM204 we made is obviously for A20.

Here are the schematics of A20-SOM204 and SOM204-EVB.

Here is our A20-SOM204 prototype:

A20-SOM204

Features are: 1GB RAM, 4/8/16/32/64GB eMMC Flash, Gigabit Ethernet interface, 2K EEPROM,
Optional features not assembled by default: SPI Flash with hardware WP, Second Megabit Ethernet.

With this SOM we tested A20 with two Ethernet interfaces: one Gigabit and one Megabit working together. The practice prove A20 can have two separate working Ethernets, but there is one issue both share same clock, so if the both Ethernet works together they can be only Megabit.

The second SOM204 module we work on is with A64.
The features are 2GB RAM, 4/8/16/32/64GB eMMC, Gigabit Ethernet interface, 2K EEPROM
Optional features not assembled by default: SPI Flash with hardware WP, Second Gigabit Ethernet (USB-Gigabit), SATA (USB-SATA), CAN.

The third SOM204 module we work on is with RK3399.
The features are 4GB RAM, 4/8/16/32/64GB eMMC, Gigabit Ethernet, PCIe, USB3, 2K EEPROM
Optional features not assembled by default: SPI Flash with hardware WP, Second Gigabit Ehternet (USB-Gigabit), SATA (USB-SATA), CAN.

A20-SOM204 and SOM204-EVB will be for sale in November. Prices will be comparable to existing A20-SOM A20-SOM-EVB.

A20-SOM204 is separate product and not meant to replacement A20-SOM neigher we have intentions to discontinue A20-SOM. Both products will be active and in production.

Software support for all SOM204 modules will include Android and Linux.

A64-OLinuXino Open Source Hardware board with 64-bit Cortex-A53 processor is in released

A64-OLinuXino-

A64-OLinuXino-22

A64-OLinuXino OSHW board is now released. Current revision is Rev.C.

Features are:

  • A64 Cortex-A53 64-bit SoC from Allwinner
  • AXP803 PMU with Lipo charger and step-up
  • 1 or 2GB or DDR3L @672 Mhz
  • 0 / 4 or 16GB of industrial grade eMMC
  • SPI Flash in SO8 package with hardware WP (not assembled)
  • USB-OTG and USB-HOST
  • HSIC connector (not assembled)
  • Gigabit Ethernet
  • BLE/WiFi module
  • HDMI and MIPI display connectors
  • microSD card
  • Debug console serial connector
  • Audio In and Out
  • LCD display connector
  • GPIO 40 pin connector (not assembled)
  • UEXT connector (not assembled)
  • 5V power jack
  • Dimensions: 90×62.5 mm

For the moment we have three models:

  • 1G0G with 1GB RAM, no Flash, no WiFi/BLE
  • 1G4GW with 1GB RAM, 4GB eMMC and WiFi/BLE
  • 2G16G-IND with 2GB RAM, 16GB eMMC with industrial grade components -40+85C

The optional connectors and SPI Flash etc may be assembled upon request for small fee.

A33-OLinuXino OSHW Quad Core Linux SBC prototypes ready for test

A33-OLinuXino-top

We just assembled our A33-OLinuXino prototypes, these have PMU and should not overheat so badly as H3.

A33-OLinuXino-bottom

The advantage to have PMU is also that it have LiPo charger and can run from LiPo battery.

The features are:

  • A33 Quad core Cortex-A7 SoC
  • AXP223 PMU
  • 1/2GB RAM
  • optional 4GB NAND Flash
  • Audion Input
  • Audio Output
  • CSI/DSI connector
  • 40 pin LCD connector for LCD-OLinuXino-XX LCD modules
  • USB-OTG
  • GPIO 40 pin connector

Both H3 and A33 support dual CS DDR memories, this means they can work with the new 8Gb DDR3 ram chips which have two CS lines and H3-OLinuXino and A33-OLinuXino could have 1GB or 2GB RAM as option.

A33 have no Ethernet and HDMI, would be good for handheld video/audio processing devices.

The next revision of H3 and A33 OLinuXino will have eMMC option too.

 

EDIT: 18.00 o’clock update A33-OLinuXino is booting and working fine. As we expected although with same Quad Core Cortex-A7 it do not overheats at all compared to H3. Something is really broken in the H3 Linux clock/power configuration!!!

Android scripts for OLinuXino

Android-bot

The Android images for our OLinuXino boards are not the stock images with the Allwinner SDK, some small things were changed to add support for our WiFi modules etc. We wanted to publish the sources for a very long time, but the files are 6 GB for each board and this is not easy to store and serve.

Now the configs are on GitHub with links to the Allwinner stock SDK sources so if you want to build your own Android image you have these as templates.

Building Android Jelly Bean for A13-OLinuXino-WIFI Step by Step Tutorial

JB

Akshay Mathur sent us very detailed step by step tutorial how to build Android Jelly Bean for A13-OLinuXino-WIFI.

Our first A31-SOM – Quad Core ARM Cortex-A7 System on Module prototypes work fine!

A31-SOM

We just assembled our first A31-SOM module prototypes.

A31-SOM-BACK

They have these features:

  • A31 Quad Core Cortex-A7 @ 1Ghz, Octa core Power VR SGX544MP2 GPU, designed for power efficiency, 1MB L2 Cache, 32K I-Cache, 32K D-Cache, FPU, NEON SIMD
  • 2GB DDR3 RAM with 64 bit data bus for fast access
  • optional 8GB NAND Flash
  • Power Management Unit AXP221
  • LiPo battery charger and step up for USB 5V supply
  • micro SD card
  • 3 buttons
  • UART0 console connector
  • all GPIOs and pins on x6 40 pin 0.05″ connectors
  • RTC, Timer, HS-Timer
  • 16-Ch DMA
  • USB-OTG
  • x2 USB Low/Full/High speed Hosts
  • 4SPI, 5 TWI/I2C
  • x6 UARTS
  • x2 PCM
  • x2 I2S
  • ITU601 / MIPI CSI
  • MIPI DSI
  • HDMI 1.4
  • x2-CH LVDS
  • x2-CH RGB LCD
  • IR
  • LRADC
  • GMAC
  • Audio codec
  • 4K x 2K video playback

We need some weeks to test them before run production, so these modules will be in stock end of September earliest. A31-SOM price will start from EUR 44 for 1000 pcs, A31-SOM-8GB price will start from EUR 54 for 1000 pcs order.

We also designed A31-SOM-EVB for A31-SOM modules, which is OSHW mother board reference design and have these features:

  • Gigabit Ethernet
  • USB-OTG connector
  • 2x USB Host connectors
  • UEXT1 and UEXT2 connectors
  • SD-MMC connector
  • LCD connector compatible with our LCD displays – 4.3″, 7″, 10″, 15.6″, 15.6″HD
  • Audio output 3.5 mm jack
  • Audio input 3.5mm jack
  • 2Mpix @30 fps Camera on board
  • HDMI connector
  • LiPo battery connector
  • RTC CR2032 Li battery backup connector
  • GPIOs on prototype friendly 0.1″ connectors
  • Power jack 6-16VDC

A31-SOM-EVB evaluation board with A31-SOM-8GB on it will cost EUR 97 in single quantity.

Although A31 is only Cortex-A7 you can see here  interesting comparison between RK3188 and A31 video performance.

A31 have better picture and faster video playback than RK3188 which do not have native HDMI but used LCD-> HDMI converter.

A31 supports up to 4K video playback and have 64 bit RAM data bus.

Android 4.2.2 runs fine on A31-SOM and all features are supported.

Regarding the Linux Support, there is more than year and half efforts from Maxime Ripard @ Free Electrons to bring A31 to mainline, but still some major drivers are missing though like Video, Audio and NAND.

Linux-Sunxi tree miss A31 so far, probably because there is no good development hardware for A31 platform – all devices available are either tablets either Android dongles with no Ethernet, GPIOs etc. exposed. Now when this changes perhaps some Linux-Sunxi developers may be interested 😉 we built 5 prototypes and use only 2 of them so we have 3 to send to interested developers.

With the current Linux support A31 is still good for headless Linux server with the Quad cores, 2GB RAM and Gigabit Ethernet.

Linux kernel from Allwinner SDK is also option but it will be step back from mainline. Anyway with the missing Linux-Sunxi support this is also an option for these who need Linux instead of Android.

A31-SOM will be good platform for digital signage, video processing, IP cameras, or VoIP etc.

 

Previous Older Entries