Say Hello to Es-Ti-Em-Pai STMP1-OLinuXino the Open Source Hardware with mainline Linux support and -40+125C operating temperature

Screenshot from 2019-12-10 08-05-45

ST32MP1XX SOCs from ST Microelectronics has one unique feature: They operate from -40 up to +125 by default there is no other commercial or industrial or etc temperature range. What does this means – very well done production! It’s not secret that all SOC vendors produce their chips then test them and which pass -40+125 are classified automotive grade, which fail but pass -40+85C are classified industrial and it there are SOC which fail both automotive and industrial grade on tests are sold as commercial grade.

This chip has no other than automotive grade, so ST is confident in their process quality.

For this SOC ST Microelectronics guarantee 10 years rolling availability.

The peripherals ST32MP1XX has are also industrial and real time oriented:

  • Cortex-M4 co processor, we know Cortex-A series when run RTOS has latency which do not allow fast processed like motor control etc. This is where this co-processor release the main OS processor of such demanding tasks
  • FD-CAN ST32MP1 has two cans both support FD which offer less latency and faster speed, one of them has also time triggered CAN (TTCAN)
  • 2 × ADCs with 16-bit max. resolution (12 bits up to 4.5 Msps, 14 bits up to 4 Msps, 16 bits up to 3.6 Msps)
  • 2 × 12-bit D/A converters (1 MHz)
  • 8- to 14-bit camera interface up to 140 Mbyte/s
  • Gigabit Ethernet
  • 6 × SPI (50 Mbit/s)
  • 6 × I2C FM+ (1 Mbit/s, SMBus/PMBus)
  • Documented Trust Zone and Secure Boot (may be subject to some export restrictions)

We designed our STMP1-OLinuXino to be with same layout as A20-OLinuXino-LIME2, with all connectors on same positions, so people who used LIME2 to may migrate to STMP1 if necessary.

Screenshot from 2019-12-10 08-06-22

We put the SOC on bottom this time to may attach easier bigger heat sinks or even connect it to the BOX-LIME-BLACK metal and remove the need for aluminum heatsink.

Screenshot from 2019-12-10 08-06-47

Note that schematic is not verified yet and the PCB is not routed, we just placed the components on their approximate locations.

All preliminary files are put on GitHub so people who are interested how we wired the GPIOs to match LIME2 functionality and existing customers find potential conflicts with their current design may signal while still routing is not complete 🙂

Looking forward for your comments.

A20 and A64 OLinuXino now with Libre Elec and Kodi support!

libreelec

LibreELEC is small OS which has everything to run KODI on top of it. Thanks to Dimitar Gamishev and Stefan Saraev now A20 and A64 OLinuXino has support for it.

A20 has one annoying problem there is no HDMI audio as listed in Linux-Sunxi mainlining efforts.

A20-mainline

If someone is capable to do this and have time to spend would be great, as it seems nobody cares to use A20 as media player 🙂

On A64 everything works and HDMI has audio as well.

kodi

so KODI is running full featured:

movie

Both A20 and A64 decode up to 4K movies but of course can’t display  such resolutions.

Build scripts are on GitHub. Images will be add to our FTP.

 

New IP Camera OSHW board in design RFC

img2

We started recently new design with Allwinner S3 SOC.

The board have these features:

  • Allwinner S3 Cortex-A7 running at 1.2Ghz
  • AXP209 PMU with Lipo charger and step-up for UPS
  • internal 1Gb DDR3 RAM at 1333Mhz
  • 100Mb Ethernet interface with PoE option
  • NAND/eMMC/SPI Flash on socket
  • WiFi / BT module with RTL8723BS
  • Audio In and Out
  • UEXT connector
  • Lipo battery connector
  • Configuration EEPROM
  • LCD connector for LCD-OLinuXino
  • MIPI camera connector with RPi pinout
  • CSI camera connector
  • Dimensions: 60 x 50 mm

img1

S3 SOC is on bottom so heatsink could be add if overheating due to the small PCB area.

img3

We want to build intelligent camera solution which can be powered by PoE and can work with both wired and wireless Ethernet connection.

We add MIPI camera connector with RPi pinout as there are plenty of cheap 5Mpix cameras available.

We also will provide CSI camera with 5-8Mpix separately.

Why we do this board? We want to have intelligent IP camera among our tools and we put features which are necessary to fit our potential projects. This board have also potential for Voice over IP , Video over IP, Security, Home remote monitoring etc.

Initial upload on GitHub is with our schematic and components put on PCB locations, routing is ahead, so we would like to hear your opinion.

Did we forgot something?

Can we do something differently or better?

Let us know what do you think.

STM32-E407 Open Source Hardware board got ARM Mbed OS support

Screenshot from 2019-10-24 11-07-29

Arm Mbed OS is free, open source RTOS targeting IoT applications. It supports online IDE, many compilers and devices.

More you can learn on Mbed OS web page and the GiHub repository of the project.

Recently Rohan Fletcher posted on our forum that he add support for our STM32-E407 board in Mbed OS.

For these who are interested and want to give it try – here are his instructions how to use STM32-E407 with Mbed OS.

STM32MP1-OLinuXino development update, we managed to build Ubuntu 18.04.LTS with Linux Kernel 5.3. Now we need your feedback on GPIOs

kit

One of the benefits to work with European SOC vendor and distributors – just few days after we show interest in the new STM32MP1 series of SOCs DHL come with one big carton where we got STM32MP151AAC and STM32MP157AAA3 samples plus the most comprehensive ST kit with all features of the high end STM32MP157AAA3. The credits go to EBV as we got these totally free of charge. The kit came with comprehensive documentation for both board, software support etc. In regard of customer friendliness Chinese SOC vendors has long way to go.

We needed one day to build our own Linux image as we didn’t like (no offense) the Yocto ST uses, so here is Ubuntu 18.04.LTS with Kernel 5.30 boot:

screen

Overall we have very positive vibes that STM32MP1 is good candidate for new industrial grade OLinuXino-LIME2!

The specs of the STM32MP1-OLinuXino-LIME2 we work now are:

  • STM32MP151AAC or STM32MP157AAA3 they are pin to pin compatible so one board will be used for both
  • 1GB DDR3L industrial grade memory -45+90C
  • Gigabit Ethernet with PoE plug-in option (*)
  • AXP209 PMU with LiPo charger and step-up so everything works even with no external power supply
  • two USB 2.0 high speed hosts
  • USB-OTG 2.0
  • HDMI+CEC
  • LIME2 board shape and same connector positions
  • replacing with CAN the SATA connector
  • micro SD-card
  • SPI/NAND/eMMC Flash on socket and different options(**)

(*) we love what Raspberry Pi did with their PoE hat, board which is working as normal, and have PoE functionality if PoE hat is attached. We intend to add such PoE feature to our other Allwinner boards too, but will take time to re-design them all.

(**) this is new experimental feature instead to keep many different LIME2 board versions which only differs the amount of flash on them. The Flash will be on plug in module, something which Odroid does for years and we do wonder why we didn’t do earlier, as now keeping so many versions of LIME, LIME2 and MICRO is killing our production manager and logistics :). If these Flash modules work as expected we will re-design our LIME, LIME2 and MICRO to use them also .

STM32MP1 series has some very unique features missing in Allwinner SOCs like:

  • 6× I2C up to 1 Mbit/s
  • 4× UART + 4× USART up to 12.5 Mbit/s, ISO7816, LIN, IrDA, SPI slave
  • 6× SPI 50 Mbit/s, 3 FD I2S audio class accuracy
  • 4× SAI stereo audio: I2S, PDM, SPDIF Tx
  • SPDIF Rx with 4 inputs
  • 8-14-bit camera interface up to 140 Mbyte/s
  • 2× ADCs with 16-bit max. resolution 3.6-4.5Msps
  • 2× 12-bit D/A converters 1 MHz

We will try to arrange GPIOs with similar functions so A20-LIME2 current customers to may exchange with STM32MP1-LIME2 if they want or to have second SOC choice, but we are open to listen to your tips and suggestions how to arrange the ADC/DAC signals and extra I2C, UARTS, SPIs on the GPIO1-GPIO4 connectors optimally.

STM32MP1 series has only one operating temperature range -45+125C.

Many people may think that on 650Mhz the Cortex-A7 cores are running slow, but this is because this SOC has to work reliable from -45 to +125C. All SOCs which run on extended temperature range run on lower speed clocks compared with same parts which run on commercial 0-70C. If you want to run your STM32MP1 board at home in non demanding apps, we are pretty sure you will be able to overclock it at much higher values and it will work, but when we talk industrial devices and reliable 24/7 operation the clocks are always announced with most conservative values.

The Open Source Hardware Linux board A20-OLinuXino-LIME2 is now supported by freedom respected Parabola GNU Linux-Libre distribution

Parabola_Gnu_Linux-libre_icon.svg

Parabola GNU Linux-libre is derived from Arch (the GNU/Linux distribution) and provides packages from it that meet the Free System Distribution Guidelines (FSDG) and replacements for the packages that don’t meet this requirement.

The goal is to provide a fully freedom-respecting GNU+Linux distribution.

We are very happy to announce that now A20-OLinuXino-LIME2 is one of the supported boards.

STM32MP1 nice candidate for new industrial grade OLinuXino-LIME

Screenshot from 2019-09-03 15-00-34

ST Microelectronic released new interesting device it’s Cortex-A7 and Cortex-M4 in one package. This solves two problems – the connectivity and ample amount of DDR3 memory to run Linux on Cortex-A7 core and the additional co-processor with Cortex-M4 for Real Time tasks. On top of this it’s -40+125C operating temperature and with 10 years supply longevity warranty from ST.

The prices starts around USD 5, which is in same range as Allwinner/Rockchip.

Their top model STM32MP157C has 3D openGL ES2.0 and CAN. There will be finally properly documented Secure boot (we hope 🙂  ):

Screenshot from 2019-09-03 15-06-23

From recent Twitter post I see than Bootlin already works on Linux support for STM32MP1.

Overall STM32MP1 looks like very promising SOC for Industrial grade Linux computer.

Previous Older Entries