New Board with ESP32-S2 with LiPo charger unleash the native USB-OTG functionality

We recently released our ESP32-S2-DevKit-Lipo development board with ESP32-S2 SOC. It has the same functionality and pinout as Espressif ESP32-S2-Saola-1, but in addition it has a LiPo charger and battery management and is designed for Ultra low power – only 30uA consumption when on battery and deep sleep. This allows handheld battery operated applications. The LiPo part can power external sensors/circuits. This board has a built-in programmer with a CH340T USB-Serial convertor.

Many have noticed that ESP32-S2 has a native USB-OTG. Then why did we put the CH340T on it? The reason is that the Espressif SDK didn’t support USB back when we designed this board.

Now Espressif SDK adds support for a USB bootloader and the programming of the ESP32-S2 can be done by the native USB interface, we decided to make a new revision where the native USB-OTG interface is used.

We wanted to keep the LiPo battery functionality and this created an interesting technical challenge: the USB-OTG port can be used both as device and host. When used as a device, the board is powered by the USB and LiPo battery is charging. When used as a USB host (i.e. you can attach USB devices to the port) the USB port must supply 5V to the USB devices connected. Our first prototype had a power supply problem: when the ESP32-S2 works as a host the battery is powering the USB-OTG port with 5V, but there is attached also the LiPo charger circuit, so infinite loop is made: battery -> step up to 5V -> USB -> LiPo chgarger -> battery 🙂

This issue was preventing us from releasing this board earlier, but now on Rev.B all of these issues are fixed so we are about to run production.

Needless to say we kept the ultra low power design and the new board also consumes as low as 30uA in deep sleep.

Searching on the net it seems that no one else has implemented a USB-OTG functionality to the ESP32-S2 yet so this one will be the first. Also to the best of our knowledge there is still no software support for a USB host on the ESP32-S2 but we hope after our hardware is released this will push and accelerate the software development further.

ESP32-S2-DevKit-LiPo-USB is going to be released as Open Source Hardware like other IoT solutions we have.

New OSHW board with STM32F303 now can have CAN and USB working at same time, operates from -40+85C and with power supply from 4.2-40VDC

OLIMEXINO-STM32F3 is re-design of our popular OLIMEXINO-STM32 board.

What is new?

  • STM32F303RCT6TR is used which allow CAN and USB to work at the same time. The F1 Series of STM32 shared same buffer for both USB and CAN which leads to not be able to work with both CAN and USB at the same time. This is solved in F3 series
  • Increased amount of memory: 256KB Flash, 40KB RAM
  • Power supply is now from 4.2VDC up to 40VDC which allow OLIMEXINO-STM32F3 to work in Automotive applications without special power converters
  • Industrial temperature grade -40+85C
  • Real Time Clock backup battery holder for CR2032 Li battery
  • Lower cost

The price of OLIMEXINO-STM32F3 is EUR 14.95 for single unit and drops to EUR 11.96 for 50+ pcs order.

New Open Source Hardware IoT ESP32-S2 development boards with LiPo Battery Charger and consumption of only 30uA in deep sleep target handheld WiFi apps

ESP32-S2 is new SOC from Espressif which fills the gap between ESP32 and ESP8266.

It has the same memory model as ESP32 but has cut the Ethernet and Bluetooth parts, so only WiFi connection is possible – same as ESP8266, but offers more power, secure boot and encrypted firmware. Also support of decent SSL connection, something which lacks in ESP8266.

Pricewise now S2 is a bit lower cost than ESP32 and more expensive than ESP8266, but there is very strong competition in this niche coming from the new Bouffalo BL6XX chips, so my prediction is that to stay ahead Espressif will further lower the prices of ESP32-S2 to match ESP8266 very soon.

For comparison with ESP32 and ESP8266 the new ESP32-S2 has plenty of GPIOs up to 43!

Initially Espressif has announced that their ESP32-S2-WROVER modules will have as low as 2-4uA consumption, but later they increased this value to 20uA. Not quite well as their target but still very good achievement.

Our ESP32-S2-DevKit-Lipo is pin to pin compatible with ESP32-S2-Saola-1:

To keep compatibility with SAOLA-1 we add RGB LED, but also add LiPo battery charger and ESP32-S2-DevKit-Lipo can operate even without external power supply only on LiPo battery, there is battery level monitoring and external power supply sense. ESP32-S2-DevKit-Lipo can power external circuits with 3.3V up to 200mA when operate on battery.

ESP32-S2-DevKit-Lipo has build in programmer with CH340T. There is possibility the programmer part to be excluded and to use ESP32-S2 directy USB connection.

When operating on battery if the RGB LED is enabled the power consumption is ridiculous 700uA as the RGB LED appear to use lot of current even when not in operation, but there is RGB disable solder jumper which if opened you will not be able to operate the RGB LED on battery but will decrease the power consumption to total less 30uA in deep sleep.

For these who need more memory there is variant ESP32-S2-WROVER-DevKit-Lipo with 2MB of PSRAM.

The prices start from EUR 5.56 for ESP32-S2-DevKit-Lipo and EUR 6.36 for ESP32-S2-WROVER-DevKit-Lipo .

PWR-SWITCH is optically isolated EU style power load switch for up to 3500W, 230VAC/16A and can be driven with any microcontroller, Arduino, EPS32, or Linux computers directly with 3-24V

PWR-SWITCH hides the high voltage problems from the Arduino, ESP32, Raspberry Pi, Beaglebone, OLinuXino developers. It has 1500VAC optically isolation and can drive high voltage up to 230VAC / 16A loads safely.

To switch On or Off the loads from 3 to 24VDC can be used, so you can drive the loads with any microcontroller only 1mA is necessary to trigger the switch.

PWR-SWITCH is with EU stype plug and receptacle, so to use it in US or in UK you will need some of these:US to EU adapter, EU to US adapter or UK to EU adapter.

 PWR-SWITCH has CE-EMC and LVD certification.

Green LED show the switch status.

LIME2-SHIELD adds CAN, second SD-card, two UEXT connectors, Audio IN and OUT, breadboard friendly GPIOs to A20-OLinuXino-LIME2 Open Source Hardware Linux computer

A20-OLinuXino-LIME2 is with small compact design, this is why we couldn’t put on it all connectors for the functionality this board offers.

The existing 0.05″ step connectors are OK for cables and shields, but are pain when you want to breadboard something or to attach UEXT module.

This is why we made LIME2-SHIELD open source hardware shield. It has these signals available:

LIME2-SHIELD User manual explains how to prepare your SD-card for booting Linux on A20-OLinuXino-LIME2, then how to setup the board with different scripts and device tree.

Demo codes how to work with GPIO, I2C, SPI, CAN with C, Python and console are included:

New Open Source Hardware board ESP-PROG allow you to program any Espressif device and can be used as general purpose USB-Serial converter

Created with GIMP

ESP-PROG is USB to Serial converter but beside the Serial TX and RX signals it also can power the target with +5V up to 0.5A or 3.3V up to 0.5A and have two additional signals which make programming automatic RESET (EN) and BOOT enable.

ESP-PROG-C includes all necessary cables for the ISP programming – 7 pcs jumper wires female to female and 6 pin ICSP cable.

ESP-PROG is based on CH340T IC and has drivers for Linux, Windows, MACOS, Android with up to 2 Mbps speed.

Open Source Hardware Industrial Linux computers STMP1-OLinuXino-LIME2 prototypes are ready for testing

STMP1

First prototypes of the Open Source Hardware Industrial grade operating at -45+85C Linux Single Board Computers STMP1-OLinuXino-LIME2 are assembled.

STMP1a

We build couple of boards with STM32MP153 and STM32MP157 for the first tests.

Now time to add Linux mainline support for it in OLIMAGE building and to add Ubuntu and Debian minimal and base images for it in http://images.olimex.com

Industrial grade -45+85C STMP1-SOM is almost completely routed and pin to pin compatible with A13-SOM

STMP1_SOM_bot

A13-SOM-256 and A13-SOM-512 are low cost Linux running System on Modules which are very popular but lack industrial grade operating temperature.

STM32MP1XXX series of SOC from ST is the first mass produced SOC which operates from -45 up to +125C by default, so we decided to design SOM module with STM32MP1XX SOC which to be pin to pin compatible with A13-SOM and offer same interfaces and signals so it could be drop in replacement for A13-SOM without need to re-design the complete product.

As you can see for STMP1-SOM we decided to put the SOC on opposite side of the connectors, this allow if necessary to add aluminum heatsink without interference with mainboard.

STMP1-SOM_TOP

Also we add AXP209 PMU which allow lower power operating modes and LiPo battery backup and operation on battery only which is missing in the original A13-SOM.

STMP1-SOM will be offered with three SOC choices STM32MP151, STM32MP153 and STM32MP157.

The prices will start from EUR 15 for the non industrial grade memory which are similar to A13-SOM and EUR 18 for the industrial grade -45+85C memory version.

We expect first STMP1-SOMs to be available in July 2020.

Full mainline Linux support will be available at http://images.olimex.com/

New Open Source Hardware board released: BB-TB6612 Dual DC motor controller with PWM to drive small robot cars with 12V up to 1.2A motors

BB-TB6612b

BB-TB6612 is dual channel DC motor controller board it is nice add on for the Robot chassis we have ROBOT-2WD-KIT , ROBOT-2WD-KIT2 , ROBOT-2WDL-KIT , ROBOT-3-WHEEL-KIT and can drive these gear motors: MG-6-120 , MG-6-48  and MG-6V-1:380

The digital logic can be from 2.7 up to 5.5V. The motor voltage can be from 2.5 up to 13.5V.

PWM, CW, CCW, brake-stop, stand-by modes are implemented.

 

ESD safe, powerful 65W soldering iron with LCD display, digital PID temperature adjustment 250-480C in stock

ATN-ST2065D

ATN-SLD2065D is professional grade, powerful 65W soldering iron with digital PID temperature control and ceramic heater element for fast heating. Build in motion sensor enter sleep mode if the soldering iron is not moved for more than 10 minutes and completely shutdown after 20 minutes of non activity.

It has LCD display, power and +- buttons, LED status indicator and heats fast.

For these who are familiar with TS100 soldering iron,  ATN-SLD2065D is similar but with much more power and allow even bigger PTH components to be soldered quick and easy.

The soldering iron comes by default with one ATN-T900-B solder tip which is good for PTH components soldering and rework, but we also offer 4 more different tips which are good for normal and fine pitch SMT components soldering.

The ATN-T900 soldering tips are with professional grade excellent plating, which allow long lasting work, but they also are priced very competitive. For comparison ERSA and  Weller soldering tips which are with same grade plating cost EUR 6-12. We use ATN-T900 in our daily production and they are very good choice as price/performance, the normal low grade soldering tips do not last more than couple of days with intensive work at our factory. ATN-T900 lasts for about month, for the about same time ERSA/Weller tips also wear off at intensive work.

The ATN-SLD2065D-HS are ceramic heaters with long life and very competitive price,  ATN-SLD2065D auto detects broken heater and signals for exchange.

With their good pricing ATN-SLD2065D soldering iron and ATN-T900 tips are very good choice for both professional engineers and beginners.

Previous Older Entries