New product in stock: 7000 mAh LiPo battery with JST connector

LIPO7000

BATTERY-LiPo7000mAh is re-chargable Lithium Polymer battery with over voltage and under voltage protection circuit and JST connector for all our OLinuXino, OLIMEXINO, PINGUINO, Duinomite boards.

This battery when attached to OLinuXino OSHW computers will allow them to run without external power supply for all day long. Normally OLinuXino consumption is between 0.2 and 0.5A depend on workload this means with this battery fully charged they will work between 14-35 hours stand alone.

Note that these LiPo batteries are considered dangerous for transportation and we can ship them only with ground service like DPD, UPS Standard, TNT Economy, which limits the shipping options to just EU.

A64-OLinuXino Open Source Hardware board with 64-bit Cortex-A53 processor is in released

A64-OLinuXino-

A64-OLinuXino-22

A64-OLinuXino OSHW board is now released. Current revision is Rev.C.

Features are:

  • A64 Cortex-A53 64-bit SoC from Allwinner
  • AXP803 PMU with Lipo charger and step-up
  • 1 or 2GB or DDR3L @672 Mhz
  • 0 / 4 or 16GB of industrial grade eMMC
  • SPI Flash in SO8 package with hardware WP (not assembled)
  • USB-OTG and USB-HOST
  • HSIC connectorย (not assembled)
  • Gigabit Ethernet
  • BLE/WiFi module
  • HDMI and MIPI display connectors
  • microSD card
  • Debug console serial connector
  • Audio In and Out
  • LCD display connector
  • GPIO 40 pin connector (not assembled)
  • UEXT connector (not assembled)
  • 5V power jack
  • Dimensions: 90×62.5 mm

For the moment we have three models:

  • 1G0G with 1GB RAM, no Flash, no WiFi/BLE
  • 1G4GW with 1GB RAM, 4GB eMMC and WiFi/BLE
  • 2G16G-IND with 2GB RAM, 16GB eMMC with industrial grade components -40+85C

The optional connectors and SPI Flash etc may be assembled upon request for small fee.

Sneak preview of new OSHW IoT board: ESP32-Gateway

ESP32-GATEWAY

ESP32-EVB really took us lot of time to complete mostly due to the not so complete documentation around Ethernet and our own silly errors. Also we wanted to add so many interfaces there to may people evaluate them all: Ethernet, CAN, Infrared, Relays LiPo UPS etc etc and the board become 75×75 mm. The price also went from EUR 22 to EUR 26.

In parallel we quietly were working on stripped version named ESP32-GATEWAY, as the name says we wanted just to keep here the connectivity: WiFi, BLE, Ethernet, USB for programming and micro SD card.

All available GPIOs are made on 0.1″ step strip at the bottom of the board, and two nice mount holes:

ESP32-GATEWAY-1

Today we assembled the first prototypes and we will test tomorrow. If everything is OK we will run production. We already have 100 blank PCBs ready as after so much time spent on ESP32-EVB we do not expect any troubles, but still wanted to reduce the risk to throw in the garbage bin more than 100 boards if we missed something.

So hold your breath if everything is OK we will have 100 boards for sale next week ๐Ÿ™‚

The price of ESP32-Gateway will be EUR 22.

A20-OLINUXINO-MICRO now available also in Industrial temperature grade -45+85C

A20-OLINUXINO-MICRO-EMMC-3

We are selling for some time already A20-OLinuXino-MICRO Rev.J where few things were improved:

  1. We changed the LAN PHY from Realtek to Microchip as latter is more reliable supplier for both commercial and industrial temperature components, we searched desperately Realtek PHY in industrial temperature grade but without success.
  2. We extended the input working voltage from 6-16VDC to 8-24VDC
  3. We changed the NAND Flash to eMMC (but old NAND style flash is still possible to assembly)

The Ethernet PHY change requires new patches on the Uboot and Linux images which are already uploaded.

ESP32-WROOM-32 WiFi/Bluetooth module is in stock!

esp32-wroom32-1

ESP32-WROOM-32 modules are in stock now!

Again these are from the very first lot and with limited supply. To give chances to more developers to try them we will not allow more than 3 modules per order.

This module is good only if you develop your own board. For these who are not good with the soldering iron and SMD components soldering our advice is to wait for new supply of ESP32-CoreBoards or our own ESP32-EVB which will come with two Relays, Two buttons, SD-card connector, Ethernet 100Mbit and all signals on prototyping friendly 0.1″ step connectors.

Thanks for all who posted tips on our blog about ESP32-EVB feature wishlist!

EDIT: there was question on Twitter if these are original Espressif parts and why there is no FCC/CE markinig, my guess is that the certification is not complete, as it’s in the datasheet but not on module body. The modules come directly from Espressif, as you can see from reel label they are manufactured October 15th 2016 and one week later are in our stock for sale ๐Ÿ™‚

esp32

A64-OLinuXino-eMMC rev.B OSHW 64 bit ARM development board prototypes are testing

A64-OLinuXino-1

A64-OLinuXino-2

What you see is our improved REV.B of A64-OLinuXino. What’s new:

  • Gigabit PHY is now KSZ9031 from MICROCHIP/MICREL which allow board to be produced in both commercial and industrial grade!
  • DDR3 is now DDR3L for lower power
  • we add SPI flash footprint U12
  • Audio input now is jumper selectable between LINE-IN and MIC-IN
  • eMMC now can work on software selectable voltage 3.3V or 1.8V which would allow faster speeds
  • status LED is attached to port PE17
  • size 90×60 mm

Now we do final software tests and if everything is OK we will run production.

 

TERES-I DIY Open Source Hardware hacker’s Laptop update

keyb

It’s have been long time since I blogged about our laptop project.

What is the status – we have first PCBs prototyped and most of parts works fine.

We had to make Matrix keyboard + I2C touchpad to USB converter board. We did this with small AVR.

For this project we couldn’t use any of our standard connectors – we had to source all new: mini HDMI connectors, USB host connectors, power jack, audio jack connectors all they had to be low profile and embedded inside the PCB, hence this off form of the main PCB:

PCB

The LCDs used in laptops are not as the normal LCDs, they are very thin only 3mm or less and as their cable is special as must have as low as possible number of thin wires knitted together in very thin round cable, is has to go through laptop plastic’s hinges and normal cable can’t fit there. This is why all laptop LCDs are not parallel RGB neither LVDS but use eDP interface.

For bad luck A64 do not support such interface so we start to search LVDS/HDMI/RGB to eDP converter ICs. What we found is that Western suppliers solutions (TI etc) are more expensive than A64 chip itself so no go. We found Chinese solution for $1 NCS8801 and we said – well this is our solution ๐Ÿ™‚ we made PCBs prototype and sourced few chips then we struggled by the lack of documentation ๐Ÿ™‚ The ‘datasheet’ is 30 pages and the only code which is on the net initializes registers at addresses not mentioned in the datasheet, after spending almost 4 weeks on this we gave up and start looking for another solution. We found ANX6345 which is a bit more expensive but has some code in Linux Kernel and seems used with Rockchip ICs, so we hope this to solve LCD issue. We designed new board and got the new prototypes few days ago so they wait open window on assembly line to be assembled, crossing fingers everything to work ๐Ÿ™‚

The mechanical parts has their history too. In June we placed orders to several different suppliers for the plastic parts, speakers, touchpads, power adapters, screws, hinges, total 40 different parts which are inside the laptop. The orders were complete in July and consolidated as one shipment on August 6 they were expressed with TNT and 2 days later were at Sofia airport, but the troubles just began ๐Ÿ™‚

To import something may seems very easy for outsiders, but has it’s tricks. Usually every component can be classified in several positions in customs tariff, for instance LCDs have at least 7-8 different codes at which they can be imported, like they can be classified as display for computing equipment, as display for TV, as display for signage, as display for metal processing machine, etc etc. The trouble is that all these positions had different import tax ๐Ÿ™‚ and of course Bulgarian customs try to force you to pay on the highest tariff code unless you prove them other. Another issue is that there work mostly people with economic education and very few know electronics matter. Import tax starts from 0% for computer parts and go up to 4-5%ย for TVs and machines, not small amount when you talk for $200 laptop parts! So laptop parts were sitting on customs 3 weeks as customs officers were trying to tariff every hinge, screw, plastic etc part as different product to tariff it with the highest code. Fortunately after 3 weeks of thinking somebody with common sense allowed all laptop spare parts to be imported as such with 0% tax and we got them today, but the fight will continue as this was only 10% of the order which we wanted to receive promptly paying expensive air transport, remain 90% parts still travel by sea and will arrive end of September, so let’s see how they will tariff these when arrive ๐Ÿ™‚

We get lot of request when the laptop will be done and we love all our impatient customers ๐Ÿ™‚

Guys be sure that we do anything humanly possible to release it as soon as we can, but to design something from scratch which you had never did before is not easy, once we do this I’m sure we will easily make 10 other laptops, but first time is always more difficult, to arrange logistic of so many parts and produce is not less challenging.

 

P.S. I hope you likeย the “Super” key on our new keyboard above ๐Ÿ™‚

Previous Older Entries