The Tukhla project was completed in April 2021. However, due to the COVID-19 semiconductor madness, we were unable to assemble prototypes because of the lack of semiconductors. The development of this project is financed by Ignitial SAS, a company based in France.
Finally we got enough chips to complete the first three prototypes and we assembled them last week before the May’s Holidays.
Tukhla has these features:
MIMX8QM5AVUFFAB 8-core processor:
x2 Cortex-A72 running at 1.6Ghz
x4 Cortex-A53 running at 1.2Ghz
x2 Cortex-M4F running at 264Mhz
8 GB LPDR4 64 bit @1600Mhz
Connectivity:
1× PCIe (2-lanes)
1× USB 3.0 with PHY
1x USB 3.0 dual role with PHY
1× SATA 3.0
2× 1Gb Ethernet with AVB
1× CAN/CAN-FD
1x HDMI Rx
GPU:
2xGC7000 XSVX
16× Vec4 shaders with 64 execution units
Dual independent 8-Vec4 shader GPUs or a combined 16-Vec4 shader GPU
OpenGL 3.0, 2.1
OpenGL ES 3.2, 3.1 (with AEP), 3.0, 2.0, and 1.1
OpenCL 1.2 Full Profile and 1.1
OpenVG 1.1
Vulkan
VPU:
H.265 decode (4Kp60)
H.264 decode (4Kp30)
WMV9/VC-1 imple decode
MPEG 1 and 2 decode
AVS decodeMPEG4.2 ASP,
H.263, Sorenson Spark decode
Divx 3.11 including GMC decode
ON2/Google VP6/VP8 decode
RealVideo 8/9/10 decode
JPEG and MJPEG decode
2× H.264 encode (1080p30)
Display:
Supports single UltraHD 4Kp60 display
or up to 4 independent FullHD 1080p60 displays
2× MIPI-DSI with 4 lanes each
1× HDMI-TX/DisplayPort
2× LVDS Tx with 2 channels of 4 lanes each
Camera:
2× MIPI-CSI with 4-lanes each, MIPI DPHYSM v1.
Security:
Advanced High Assurance Boot (AHAB) secure & encrypted boot
Operating temperature:
Automotive AEC-Q100 Grade 3 -40+125C
We now experiment with NXP Yocto build images to verify everythings is working correctly, before we run production.
The open source hardware STMP157-OLinuXino industrial grade Linux computer got new shield which adds two UEXT connectors, second micro SD card and 40 pin GPIO connector in breadboard friendly 0.1″ (2.54 mm) step format.
STMP15X-SHIELD plugs on top of OLinuXino, the overlays are already included in OLIMAGE Linux images and no need for additional setup.
Our LCD-OLinuXino-7CTS and LCD-OLinuXino-10CTS couldn’t be used with the metal frames as their touch panel area is different from that of the resistive touch panels.
These metal frames are made for very looking industrial panels and we had many requests to release a new design which could fit the capacitive touch screens LCDs.
It took some time, but now we are happy to announce that we already have stock of new metal frame versions, which match the capacitive displays: LCD7CTS-METAL-FRAME and LCD10CTS-METAL-FRAME.
Industrial grade -40+85C (STMP157-OLinuXino-LIME2H-IND) version running on 650 Mhz with HDMI output (when HDMI works operating temperature is commercial as HDMI convertor is not industrial grade)
Extended temperature -20+85C (STMP157-OLinuXino-LIME2H-EXT) version running on 800 Mhz with HDMI output (when HDMI works operating temperature is commercial as HDMI convertor is not industrial grade)
User Manual for the boards is available on the product web page.
Debian and Ubuntu Linux images are pre-build and ready to install and run.
The images are build with Olimex script Olimage which is available on GitHub.
Olimage user manual explains what is included in it and how you can modify uboot and kernel to include drivers for devices which are not included in Olimex official images.
The last issues with STM32MP1 mainline Linux kernel support were resolved and now we run STMP157-OLinuXino-LIME2 in production!
Revision B fixes all hardware issues in the initial prototype. STMP157-OLINUXINO-LIME2 is complete analog of A20-OLinuXino-LIME2 which is one of our best selling Allwinner board.
Mainline uboot and Linux kernel 5.12 images are available with all periperials working.
We will have STMP157-OLINUXINO-LIME2 on our web for sale by the end of April.
This is also our first board with Ethernet supporting Precise Time Protocol and Time Sensitive Networking implemented.
The Time Sensitive Networking (TSN) is for real-time communication with hard, non-negotiable time boundaries for end-to-end transmission latencies.
The main use of TSN is for industrial machine controllers, robots etc.
For this purpose all devices in this network need to have a common time reference and therefore, need to synchronize their clocks among each other. Only through synchronized clocks, it is possible for all network devices to operate in unison and execute the required operation at exactly the required point in time.
The time in TSN networks is usually distributed from one central time source directly through the network itself using the IEEE 1588 Precision Time Protocol, which utilizes Ethernet frames to distribute time synchronization information.
Linutronix helped to implement IEEE 1588 PTP on STMP1-OLinuXino-LIME2.
For Uboot changes Olimex Uboot was used as base. The Kernel patch is sent upstream and can be seen on the mailing list
A64-OLinuXino is Open Source Hardware Quad core 64 bit Linux Computer.
We also offer nice metal box for it named BOX-A64-BLACK:
The only problem was that A64-OLinuXino have option for on board WiFi-BT but it uses PCB antenna and when put in box the communication range was decreasing signiificantly.
New revision of A64-OLinuXino board now supports both internal PCB antenna and U.FL externally attached 2.4Ghz antenna.
So A64-OLinuXino can be put inside the metal box and have the antenna outside:
Recent Comments