Quad Core 64bit Open Source Hardware Linux computer A64-OLinuXino now have version with external antenna

A64-OLinuXino is Open Source Hardware Quad core 64 bit Linux Computer.

We also offer nice metal box for it named BOX-A64-BLACK:

The only problem was that A64-OLinuXino have option for on board WiFi-BT but it uses PCB antenna and when put in box the communication range was decreasing signiificantly.

New revision of A64-OLinuXino board now supports both internal PCB antenna and U.FL externally attached 2.4Ghz antenna.

So A64-OLinuXino can be put inside the metal box and have the antenna outside:

New Open Source Hardware OSHW board with ESP32-S2 have native USB-OTG allowing USB host and device functionality with ESP32-S2 low power modes down to 20uA are possible

ESP32-S2 is new SOC from Espressif, compared to ESP32 it has no Bluetooth and Ethernet connectivity, but offers plenty of GPIOs and has native USB-OTG interface.

Our first version uses USB to Serial converter as Espressif IDE at that time didn’t support programming via the native USB interface, but now their SDK supports USB programming, so we released new version without the not necessary USB-Serial converter.

To the best of our knowledge this is the first board to the market where USB-OTG is implemented and the board can work both in device and host mode ( at least as hardware 🙂 )

The hardware now is ahead of software as USB host functionality in SDK is missing yet, but at least we provide hardware platform for the future.

ESP32-S2-DevKit-Lipo-USB is OSHW so the CAD files are available on GitHub if someone want to see how we implement the USB-OTG. It’s really complicated as we wanted to keep the handheld battery operation and keep the LiPo charger and battery circuit. This leads to quite some over engineering around the power supply as the battery should charge when USB-OTG works in Device mode, and source 5V to the USB-OTG when it’s in Host mode!

It took us 2 revisions until we made it right, so thanks for your patience, now the board is in stock and orderable.

ESP32-S2-WROVER-DevKit-Lipo-USB with WROVER module with 2MB RAM is also available for these who want to write big applications.

Open Source Hardware S3-OLinuXino update – The new board targeting industrial vision applications is now with mainline Linux support

S3-OLinuXino is board we create to may add vision to the PTH components Soldering Robot we are working on for some time.

Revision.B now is a bit different than the first prototype we made. It has these features:

  • S3 SOC Cortex-A7 running at 1.2Ghz
  • 1Gb DDR3 RAM inside S3 SOC up to 1333Mhz
  • MIPI Raspberry Pi camera interface up to 8Mpix camera support
  • Parallel CSI camera interface up to 8 Mpix
  • Power Management Unit with LiPo battery charger and step-up to allow stand alone battery operation
  • 100Mb Ethernet interface with POE support (external optional module)
  • SPI, NAND, eMMC external optional module
  • LCD connector to connect to LCD-OLinuXino displays with different sizes and resolutions
  • LiPo battery connector
  • USB-OTG interface
  • UEXT connector with SPI, I2C, Serial and power supply
  • EXT1 connector for LED PWM lighting
  • audio input with microphone
  • audio output
  • WiFi and BT module with external antenna
  • micro SD card connector

We are working to offer Mainline Linux with this board.
Bootlin got sample board and have working MIPI driver.

S3-OLinuXino can take power from USB, LiPo battery or PoE (with optional PoE module).

Different NAND Flash, SPI Flash, eMMC flash options are possible with addon module

The only thing we still didn’t complete is USB-OTG functionality.

Mass production is planned for March 2021.

Do not forget FOSDEM is this weekend!

The most anticipated Open Source event for Europe is this weekend! Unfortunately this time online.

I just browsed some pictures from past FOSDEM events:

…and hope next year the pandemic will be over so we can meet at Bruxelles again:

Open Source Hardware STMP1-OLinuXino-LIME2 industrial grade Linux computer update – Debian Buster and Ubuntu Focal with mainline Kernel 5.10.12 now supports almost everything

STMP1-OLinuXino-LIME2 Industrial grade Linux Computer project took us almost an year of work to build proper software support for our hardware with mainline uboot and kernel.

ST demo board uses Yocto with kernel 5.4, our images use Linux Kernel 5.10.12

These who monitor our Official images at https://images.olimex.com probably nottice that we already have images with Debian Buster and Ubuntu Focal for STM32MP1 where almost everything now work with mainline Linux Kernel 5.10.12.

  • We had lot of troubles around the Ethernet, but now it works pretty well!
  • CAN-FD – works!
  • Two USB High speed hosts with 1A current – works!
  • LCD – works
  • HDMI – works!
  • eMMC Flash boot – works!
  • PMU and LiPo charger battery support – works

Two things on this board left not complete:

  • low power modes
  • USB-OTG

New prototypes rev.B now are in production, the Chinese New Year will delay them to end of February. We hope meantime to solve these two last issues and run production.

UPDATE: As some people wanted to know what was the Ethernet issue we were struggling so long, I posted in the comment section.

For the USB-OTG my guess is that it’s also some silly issue so people may help:

STM32MP1 has two High speed USB hosts and one Full speed USB-OTG, here is snip from their Hardware development document:

Here is our schematic which follows above guide:

The two High Speed USB hosts work as expected, but the USB-OTG has issue summarized here: https://pastebin.com/i6G90kdg

What makes us a little bit suspicious is that STM in their own demo board didn’t follow their Hardware Guide and were wiring one of their High speed USB as OTG and connecting USB hub to the other, ignoring the Full speed USB at all.

New Board with ESP32-S2 with LiPo charger unleash the native USB-OTG functionality

We recently released our ESP32-S2-DevKit-Lipo development board with ESP32-S2 SOC. It has the same functionality and pinout as Espressif ESP32-S2-Saola-1, but in addition it has a LiPo charger and battery management and is designed for Ultra low power – only 30uA consumption when on battery and deep sleep. This allows handheld battery operated applications. The LiPo part can power external sensors/circuits. This board has a built-in programmer with a CH340T USB-Serial convertor.

Many have noticed that ESP32-S2 has a native USB-OTG. Then why did we put the CH340T on it? The reason is that the Espressif SDK didn’t support USB back when we designed this board.

Now Espressif SDK adds support for a USB bootloader and the programming of the ESP32-S2 can be done by the native USB interface, we decided to make a new revision where the native USB-OTG interface is used.

We wanted to keep the LiPo battery functionality and this created an interesting technical challenge: the USB-OTG port can be used both as device and host. When used as a device, the board is powered by the USB and LiPo battery is charging. When used as a USB host (i.e. you can attach USB devices to the port) the USB port must supply 5V to the USB devices connected. Our first prototype had a power supply problem: when the ESP32-S2 works as a host the battery is powering the USB-OTG port with 5V, but there is attached also the LiPo charger circuit, so infinite loop is made: battery -> step up to 5V -> USB -> LiPo chgarger -> battery 🙂

This issue was preventing us from releasing this board earlier, but now on Rev.B all of these issues are fixed so we are about to run production.

Needless to say we kept the ultra low power design and the new board also consumes as low as 30uA in deep sleep.

Searching on the net it seems that no one else has implemented a USB-OTG functionality to the ESP32-S2 yet so this one will be the first. Also to the best of our knowledge there is still no software support for a USB host on the ESP32-S2 but we hope after our hardware is released this will push and accelerate the software development further.

ESP32-S2-DevKit-LiPo-USB is going to be released as Open Source Hardware like other IoT solutions we have.

New OSHW board with STM32F303 now can have CAN and USB working at same time, operates from -40+85C and with power supply from 4.2-40VDC

OLIMEXINO-STM32F3 is re-design of our popular OLIMEXINO-STM32 board.

What is new?

  • STM32F303RCT6TR is used which allow CAN and USB to work at the same time. The F1 Series of STM32 shared same buffer for both USB and CAN which leads to not be able to work with both CAN and USB at the same time. This is solved in F3 series
  • Increased amount of memory: 256KB Flash, 40KB RAM
  • Power supply is now from 4.2VDC up to 40VDC which allow OLIMEXINO-STM32F3 to work in Automotive applications without special power converters
  • Industrial temperature grade -40+85C
  • Real Time Clock backup battery holder for CR2032 Li battery
  • Lower cost

The price of OLIMEXINO-STM32F3 is EUR 14.95 for single unit and drops to EUR 11.96 for 50+ pcs order.

New Open Source Hardware IoT ESP32-S2 development boards with LiPo Battery Charger and consumption of only 30uA in deep sleep target handheld WiFi apps

ESP32-S2 is new SOC from Espressif which fills the gap between ESP32 and ESP8266.

It has the same memory model as ESP32 but has cut the Ethernet and Bluetooth parts, so only WiFi connection is possible – same as ESP8266, but offers more power, secure boot and encrypted firmware. Also support of decent SSL connection, something which lacks in ESP8266.

Pricewise now S2 is a bit lower cost than ESP32 and more expensive than ESP8266, but there is very strong competition in this niche coming from the new Bouffalo BL6XX chips, so my prediction is that to stay ahead Espressif will further lower the prices of ESP32-S2 to match ESP8266 very soon.

For comparison with ESP32 and ESP8266 the new ESP32-S2 has plenty of GPIOs up to 43!

Initially Espressif has announced that their ESP32-S2-WROVER modules will have as low as 2-4uA consumption, but later they increased this value to 20uA. Not quite well as their target but still very good achievement.

Our ESP32-S2-DevKit-Lipo is pin to pin compatible with ESP32-S2-Saola-1:

To keep compatibility with SAOLA-1 we add RGB LED, but also add LiPo battery charger and ESP32-S2-DevKit-Lipo can operate even without external power supply only on LiPo battery, there is battery level monitoring and external power supply sense. ESP32-S2-DevKit-Lipo can power external circuits with 3.3V up to 200mA when operate on battery.

ESP32-S2-DevKit-Lipo has build in programmer with CH340T. There is possibility the programmer part to be excluded and to use ESP32-S2 directy USB connection.

When operating on battery if the RGB LED is enabled the power consumption is ridiculous 700uA as the RGB LED appear to use lot of current even when not in operation, but there is RGB disable solder jumper which if opened you will not be able to operate the RGB LED on battery but will decrease the power consumption to total less 30uA in deep sleep.

For these who need more memory there is variant ESP32-S2-WROVER-DevKit-Lipo with 2MB of PSRAM.

The prices start from EUR 5.56 for ESP32-S2-DevKit-Lipo and EUR 6.36 for ESP32-S2-WROVER-DevKit-Lipo .

Linux tip: How to reset device connected to USB port

Sometimes devices connected to USB ports need to be re-set. It’s not unusual GSM modems and WiFi dongles to freeze and the only way to bring them back to life is to remove and re-attach.

OLinuXino USB ports has power switches and current limiters which can be controller by Linux drivers.

After some experimenting we found that it’s not so easy actually to do it with the standard file system and shell.

A friend suggested to try this code. It worked very well, so here is how to use it. First you need to download and compile it, then to make it executable:

$ mkdir usbreset
$ cd usbreset
$ wget $ https://raw.githubusercontent.com/jkulesza/usbreset/master/usbreset.c
$ cc usbreset.c -o usbreset
$ chmod +x usbreset

Then you need to see where your USB device is. In our case I connected MOD-WIFI-R5370 WiFi USB dongle:

$ lsusb

you will see something like:

Bus 002 Device 039: ID 148f:5370 Ralink Technology, Corp. RT5370 Wireless Adapter

to reset this device use the command:

./usbreset /dev/bus/usb/002/039

The device USB port will be power off for a second then power on again.

All above is tested and work with official Olimex Linux images from images.olimex.com, but should work on other Linux distributions too.

LIME2-SHIELD adds CAN, second SD-card, two UEXT connectors, Audio IN and OUT, breadboard friendly GPIOs to A20-OLinuXino-LIME2 Open Source Hardware Linux computer

A20-OLinuXino-LIME2 is with small compact design, this is why we couldn’t put on it all connectors for the functionality this board offers.

The existing 0.05″ step connectors are OK for cables and shields, but are pain when you want to breadboard something or to attach UEXT module.

This is why we made LIME2-SHIELD open source hardware shield. It has these signals available:

LIME2-SHIELD User manual explains how to prepare your SD-card for booting Linux on A20-OLinuXino-LIME2, then how to setup the board with different scripts and device tree.

Demo codes how to work with GPIO, I2C, SPI, CAN with C, Python and console are included:

Previous Older Entries Next Newer Entries