Are you ready for OpenFest 2016? We will have the already traditional Soldering Workshop there – The GHOST of Open Source Hardware is waiting for you!

oshw-ghost

Tomorrow is Open Fest 2016 in Sofia! The is similar to FOSDEM yearly meeting of thousands of people in Bulgaria, who care about the open source technologies.

The program is here: http://www.openfest.org/2016/en/schedule/

Beside the talk about our progress on the OSHW Laptop , we will have the traditional FREE Soldering Workshop there.

For this purpose we created special PCB named The GHOST of the Open Source Hardware 🙂

Come and have fun, the board is very easy to assembly. It has two LEDs and PIC microcontroller with capacitive touch button made as the OSHW logo. As soon as you touch it the GHOST ‘eyes’ start to glow slowly.

The PCB has pin so you can attach it to your cloths as badge. On top there is standard Microchip ICSP connector, so later you can modify the code up to your taste.

We will have limited number of soldering irons with us, so if you have your own, bring it with you to speed up the assembly and not make tails of people waiting to solder their kit.

Final updates on A64-OLinuXino GMAC and eMMC, we are ready to launch production

A64-OLinuXino-1

We complete our test with Rev.B

Good news is that Gigabit interface works well with Micrel/Microchip PHY and result is real Gigabit bandwidth. A20 although having Gigabit interface can’t make more than 700 Mbit I guess this is related to A20 capability to handle the data from GMAC. With A64 the speed is  932Mbit i.e. very close to 1Gb:

root@A64-OLinuXino:~# iperf -s 
 ------------------------------------------------------------ 
 Server listening on TCP port 5001 
 TCP window size: 85.3 KByte (default) 
 ------------------------------------------------------------ 
 [  4] local 10.0.0.4 port 5001 connected with 10.0.0.1 port 41144 
 [ ID] Interval       Transfer     Bandwidth 
 [  4]  0.0-10.0 sec  1.09 GBytes   932 Mbits/sec

 

For eMMC we followed the advice to make it dual voltage 3.3V and 1.8V with aim to have faster transfers and we implemented it in the hardware, but the tests show that transfer is same even at 1.8V is a bit lower. I don’t know if this is due to lame software settings we do in the eMMC drivers, or just the eMMC we use have same transfer on both voltages (we check datasheet and the eMMC we use have same speed quoted on both voltages), so this may be useless for our eMMC chip:

eMMC clock: 52 Mhz

eMMC@3.3V 
root@A64-OLinuXino:/home/olimex# dd if=/dev/zero of=/mnt/output conv=fdatasync bs=384k count=1k; rm -f /mnt/output 
1024+0 records in 
1024+0 records out 
402653184 bytes (403 MB, 384 MiB) copied, 33.0437 s, 12.2 MB/s 
 
eMMC@1.8V 
root@A64-OLinuXino:/home/olimex# dd if=/dev/zero of=/mnt/output conv=fdatasync bs=384k count=1k; rm -f /mnt/output 
1024+0 records in 
1024+0 records out 
402653184 bytes (403 MB, 384 MiB) copied, 37.9408 s, 10.6 MB/s 
 
SDMMC clock: 40MHz 
 
SDMMC@3.3V 
root@A64-OLinuXino:/home/olimex# dd if=/dev/zero of=/tmp/output conv=fdatasync bs=384k count=1k; rm -f /tmp/output 
1024+0 records in 
1024+0 records out 
402653184 bytes (403 MB, 384 MiB) copied, 41.1578 s, 9.8 MB/s 
 

With SDMMC as we don’t know what SD card will be inserted the clock is set to default 40Mhz.

After re-checking that everything works, we make last cosmetic changes to audio part we noticed in the last moment and will run Rev.C in production.

A64-OLinuXino-eMMC rev.B OSHW 64 bit ARM development board prototypes are testing

A64-OLinuXino-1

A64-OLinuXino-2

What you see is our improved REV.B of A64-OLinuXino. What’s new:

  • Gigabit PHY is now KSZ9031 from MICROCHIP/MICREL which allow board to be produced in both commercial and industrial grade!
  • DDR3 is now DDR3L for lower power
  • we add SPI flash footprint U12
  • Audio input now is jumper selectable between LINE-IN and MIC-IN
  • eMMC now can work on software selectable voltage 3.3V or 1.8V which would allow faster speeds
  • status LED is attached to port PE17
  • size 90×60 mm

Now we do final software tests and if everything is OK we will run production.

 

TERES-I DIY Open Source Hardware hacker’s Laptop update

keyb

It’s have been long time since I blogged about our laptop project.

What is the status – we have first PCBs prototyped and most of parts works fine.

We had to make Matrix keyboard + I2C touchpad to USB converter board. We did this with small AVR.

For this project we couldn’t use any of our standard connectors – we had to source all new: mini HDMI connectors, USB host connectors, power jack, audio jack connectors all they had to be low profile and embedded inside the PCB, hence this off form of the main PCB:

PCB

The LCDs used in laptops are not as the normal LCDs, they are very thin only 3mm or less and as their cable is special as must have as low as possible number of thin wires knitted together in very thin round cable, is has to go through laptop plastic’s hinges and normal cable can’t fit there. This is why all laptop LCDs are not parallel RGB neither LVDS but use eDP interface.

For bad luck A64 do not support such interface so we start to search LVDS/HDMI/RGB to eDP converter ICs. What we found is that Western suppliers solutions (TI etc) are more expensive than A64 chip itself so no go. We found Chinese solution for $1 NCS8801 and we said – well this is our solution 🙂 we made PCBs prototype and sourced few chips then we struggled by the lack of documentation 🙂 The ‘datasheet’ is 30 pages and the only code which is on the net initializes registers at addresses not mentioned in the datasheet, after spending almost 4 weeks on this we gave up and start looking for another solution. We found ANX6345 which is a bit more expensive but has some code in Linux Kernel and seems used with Rockchip ICs, so we hope this to solve LCD issue. We designed new board and got the new prototypes few days ago so they wait open window on assembly line to be assembled, crossing fingers everything to work 🙂

The mechanical parts has their history too. In June we placed orders to several different suppliers for the plastic parts, speakers, touchpads, power adapters, screws, hinges, total 40 different parts which are inside the laptop. The orders were complete in July and consolidated as one shipment on August 6 they were expressed with TNT and 2 days later were at Sofia airport, but the troubles just began 🙂

To import something may seems very easy for outsiders, but has it’s tricks. Usually every component can be classified in several positions in customs tariff, for instance LCDs have at least 7-8 different codes at which they can be imported, like they can be classified as display for computing equipment, as display for TV, as display for signage, as display for metal processing machine, etc etc. The trouble is that all these positions had different import tax 🙂 and of course Bulgarian customs try to force you to pay on the highest tariff code unless you prove them other. Another issue is that there work mostly people with economic education and very few know electronics matter. Import tax starts from 0% for computer parts and go up to 4-5% for TVs and machines, not small amount when you talk for $200 laptop parts! So laptop parts were sitting on customs 3 weeks as customs officers were trying to tariff every hinge, screw, plastic etc part as different product to tariff it with the highest code. Fortunately after 3 weeks of thinking somebody with common sense allowed all laptop spare parts to be imported as such with 0% tax and we got them today, but the fight will continue as this was only 10% of the order which we wanted to receive promptly paying expensive air transport, remain 90% parts still travel by sea and will arrive end of September, so let’s see how they will tariff these when arrive 🙂

We get lot of request when the laptop will be done and we love all our impatient customers 🙂

Guys be sure that we do anything humanly possible to release it as soon as we can, but to design something from scratch which you had never did before is not easy, once we do this I’m sure we will easily make 10 other laptops, but first time is always more difficult, to arrange logistic of so many parts and produce is not less challenging.

 

P.S. I hope you like the “Super” key on our new keyboard above 🙂

OLIMEX KiCAD components libraries are uploaded on GitHub

logo

We uploaded all our KiCAD libraries on GitHub and going to maintain them there.

Why we do this?  Because many beginners who download our OSHW boards are confused by the messages from KiCAD for missing libraries 🙂 this is easy to solve by adding RELATIVE paths to search the libraries as  we always provide the library cache with the boards, i.e. all components used in the board are cached locally in the project directory, but again many beginners are confused.

Now they have all components we use in our daily work, uploaded and updated daily.

NOTE: These components are specific to OUR production, technology, limitations, way of work etc. They work optimally for us allowing us to achieve maximum yield during production. There is no guarantee of any kind that these same settings will be best for your own production, SO USE THEM ON YOUR OWN RISK!

There are tons of duplicated components which also are defined in original KiCAD libraries, again we did these as the KiCAD default libraries are made up to vendor datasheets and may not work well in our own production process.

To give you example: TQFP 0.5 mm step ICs per datasheet must have 0.3 mm width pads with 0.2 mm spaces between the pads, but using our process this yields in lot of shorts, so we made them with 0.25 mm pads width and 0.25 mm space, the 120 um thick stencils we use give best yield with 0.23 mm pad opening for solder paste – this may be not optimal for other manufacturer process who use other thickness stencils etc. BUT it works best for our technology and process based on our experience and tests.

Almost every components in our libraries have such considerations when it’s created. I hope you got the idea.

Note that almost none of our components have 3D draiwng, because our people still didn’t learn any 3D CAD tool well enough to make these, neither we use this KiCAD 3D drawing feature in our work. It may be improved in future, but for the moment if you need 3D drawing to some component you can do it by yourself and contribute back 🙂

 

 

A64-OLinuXino update, the Rev.B design will be possible to produce in industrial grade -40+85C, dual voltage eMMC 3.3/1.8V

А64-1cut

A64-OLinuXino first prototypes were made in March and lot of people wonder why we do not release for mass production this board yet 🙂 so we got lot of e-mails and I see there is need for blog post with update.

Here is the recap from the first prototypes:

  • RAM memory works at amazing 667Mhz clock much more than A20 and other boards and the board works stabile under stress tests for many hours
  • eMMC works fine, we didn’t test NAND Flash due to the missing Linux support probabbly this will stay just as option and we will assembly the boards with eMMC which is faster, better and in industrial temperature
  • Linux Kernel is 3.10.65 and works fine, we managed to run all peripherials
  • Audio In and Out is working
  • HDMI is working
  • USB host is working
  • USB-OTG is working
  • WiFi+BT is working
  • MIPI interface – no display which to use to test, any ideas?
  • HSIC interface – don’t know how to test, any ideas?
  • LiPo charger and step up works
  • LCD works
  • Ethernet Gigabit interface works just in master mode

While we worked on this board we found new PHY from Microchip which can be ordered in industrial temperature, we tested it with A20 and it works fine (we already have LIME2 version with it which is on prototype), so we decided to re-design the Ethernet part of A64-OLinuXino with it, this will allow us to produce A64-OLinuXino in industrial temperature grade -40+85C.

Another major upgrade for Rev.B is around eMMC interface, we re-designed it as per your feedback to be possible to work on programmable 3.3V and 1.8V thus to allow faster transfers.

Rev.B is routed at 90% we need 1 more week to complete it and run new prototypes. If everything goes smoothly we will be ready by end of the month.

 

Previous Older Entries Next Newer Entries