New Quad Core Cortex-A53 System-On-Module supports DDR3/DDR3L/DDR4 memories from 1 up to 4GB

Our RK3328-SOM prototypes are testing now.

These are with dimensions of only 55 x 41 mm.

RK3328 SOC has:

  • 4x Cortex-A53 cores @1.5Ghz
  • DDR3/DDR3L/DDR4 support 1/2/4GB
  • GPU: ARM Mali-450MP2
  • HDMI 2.0
  • CSI up to 5Mpix
  • Video decode H.264 H.265 4K@60Hz
  • Video encode H.264 H.265 1080p@30Hz
  • Audio: I2S, Codec
  • Gigabit 10/100/1000 Ethernet
  • Megabit 10/100 Ethernet with PHY
  • USB3.0 host
  • USB2.0 host
  • USB-OTG 2.0
  • SPI/eMMC Flash
  • SD-card

RK3328-SOM-EVB is evaluation board and reference design for RK3328-SOM:

Software support:

  • Android 10
  • Linux Kernel 4.4 is the official SDK of Rockchip. There is just basic mainline support with no drivers for USB3 although these SOCs are on the market for quite a lot of time.

The preliminary prices are:

  • RK3328-SOM-1G (1GB DDR3L) EUR 27.00
  • RK3328-SOM-2G (2GB DDR3L) EUR 37.00
  • RK3328-SOM-4G (4GB DDR4) EUR 57.00
  • RK3328-SOM-EVB (no SOM installed) EUR 18.00

RP2040-PICO-PC small computer made with the Raspberry Pi RP2040-PICO module first prototypes are ready

These who follow our account in Twitter know our small teaser posted on March 1st.

It’s small base board for RP2040-PICO the $4 module with the Cortex-M0+ processor made by Raspberry Pi foundation.

We were ready with the prototype for a long time but the RP2040-PICO modules were tricky to source 🙂

Raspberry Pi suffer from the same problems the semiconductor industry have now – no enough components to organize production and the PICO modules are hard to obtain.

From the picture above you can see what our idea is:

  • Small board taking power from the USB on the right just below the RP2040-PICO module.
  • LiPo battery charged for handheld operation and power backup.
  • Reset button.
  • Micro SD card
  • Audio output
  • HDMI connector with DVI signals to connect to monitor
  • UEXT connector with UART, SPI, I2C, 3.3V and GND to attach different sensors
  • JST2.0 4 pin I2C + power supply connector
  • Debug connector for Serial adapter

The price of RP2040-PICO-PC including the original RP2040-PICO module from Raspberry Pi with soldered headers all in one ready to use computer will cost EUR 12.00

As RP2040-PICO modules now are not available in production quantities for purchase, we decided that until we wait we could make our own version of RP2040-PICO, which to be pin to pin drop in replacement.

Fortunately some RP2040 processors are available now, so we can make our own DIL40 board, this is how our RP2040-Py board was born:

It’s mechanically same as size, with connector signals like the original RP2040-PICO.

Functionally RP2040-Py is same as RP2040-PICO, but has some imoprovements:

  • RP2040 SOC
  • 2MB of SPI Flash
  • USB micro connector on the right hand
  • Power supply DC-DC with 3.3V up to 2A (if the 5V source can provide)
  • Reset and Boot buttons
  • two 20 pin rows on the side with same signals making it drop pin to pin compatible.
  • uUEXT connector on bottom

As the board still had plenty of not used space we decided to add USB JTAG debugger, which will allow you to debug your RP2040 SOC with step by step execution, to watch variables and set breakpoints while you develop your code.

There will be three versions of the RP2040-Py:

Basic: same as RP2040-PICO but with higher current DCDC power supply (3.3V up to 2A output) additional UEXT connector and RESET button. The price of this module will be EUR 5.00

Basic+ same as Basic but with soldered headers and additional left hand side micro USB, which can be used to power the board while the left hand side micro USB can be used as USB device or USB host. The price of this module will be EUR 8.00

Debug: same as Basic+ but with populated JTAG parts, which allow real time programming and debugging. The price of this module will be EUR 19.00 The JTAG debugger is tested to work with OpenOCD/Eclipse/Visual Studio, ARM (Keil) IDE and IAR Systems EW.

Allwinner plans to release Linux capable RISC-V SOC this year

Searching for more info about their new H313 SOC I found old news from August 2020, where Allwinner announce the development of AP SOC with RISC-V and praising Open Source Hardware and the open ISA of RISC-V.

They say in this announcement that they will have AP (application processor) SOC with RISC-V in 2021!

There is lot of development around RISC-V in the last years. Espressif have their ESP32-C3 which is with RISC-V SOC, but it can’t run Linux as has not enough memory and video. We still can’t see affordable silicon capable to run Linux.

There is announcement for BeagleBoneV but still not in production and at quite higher price compared to ARM boards on the market.

Allwinner is known to be able to design and produce low cost SOCs. Let’s hope the semiconductor crisis caused by Covid19 will not delay their plans.

So is the year 2021 when we will see $35 Linux running boards with RISC-V?

I’m crossing fingers!

As soon as we can get our hands to these SOC we will make OSHW OLinuXino with it!

OSHW design and affordable SOC will lead to affordable boards and boost of the software development of RISC-V too.

Source: Allwinner news.

Our most complex Open Source Hardware board made with KiCad – the octa core iMX8 Quad Max – Tukhla is completely routed and now on prototype production

The PCB routing of our most complex board – IMX8QM-Tukhla is complete and ready for first prototype build.

We started this project June-July 2020. Due to the Covid19 the development took 10 months although only 6 month of active work was done, due to lock downs, ill developers and so on troubles.

Now the board is completely routed and has these features:

Main SOC MIMX8QM5AVUFFAB which is member of iMX8 Quad Max series – the most powerful iMX8 SOC line from NXP.


MIMX8QM5AVUFFAB has 8 cores:

  • x2 Cortex-A72 running at 1.6Ghz
  • x4 Cortex-A53 running at 1.2Ghz
  • x2 Cortex-M4F running at 264Mhz

Memory:

  • 64-bit LPDDR4 @1600 MHz

Connectivity:

  • 1× PCIe (2-lanes)
  • 1× USB 3.0 with PHY
  • 1x USB 3.0 dual role with PHY
  • 1× SATA 3.0
  • 2× 1Gb Ethernet with AVB
  • 1× CAN/CAN-FD
  • 1x HDMI Rx

GPU:

  • 2xGC7000 XSVX
  • 16× Vec4 shaders with 64 execution units
  • Dual independent 8-Vec4 shader GPUs or a combined 16-Vec4 shader GPU
  • OpenGL 3.0, 2.1
  • OpenGL ES 3.2, 3.1 (with AEP), 3.0, 2.0, and 1.1
  • OpenCL 1.2 Full Profile and 1.1
  • OpenVG 1.1
  • Vulkan

VPU:

  • H.265 decode (4Kp60)
  • H.264 decode (4Kp30)
  • WMV9/VC-1 imple decode
  • MPEG 1 and 2 decode
  • AVS decodeMPEG4.2 ASP,
  • H.263, Sorenson Spark decode
  • Divx 3.11 including GMC decode
  • ON2/Google VP6/VP8 decode
  • RealVideo 8/9/10 decode
  • JPEG and MJPEG decode
  • 2× H.264 encode (1080p30)

Display:

  • Supports single UltraHD 4Kp60 display
  • or up to 4 independent FullHD 1080p60 displays
  • 2× MIPI-DSI with 4 lanes each
  • 1× HDMI-TX/DisplayPort
  • 2× LVDS Tx with 2 channels of 4 lanes each

Camera:

  • 2× MIPI-CSI with 4-lanes each, MIPI DPHYSM v1.

Security:

  • Advanced High Assurance Boot (AHAB) secure & encrypted boot

Operating temperature:

  • Automotive AEC-Q100 Grade 3 -40+125C

To the best of our knowledge there is no Open Source Board so far which to be so complex and advanced.

Now we are running the first prototypes and crossing fingers everything to work 🙂

With the current state of the semiconductor industry production will not be possible to be run soon.

Linux support will need attention as NXP has no mainline Linux for this SOC, but only Yocto build for old kernel (4.14.98_2.3.3).

If there are people with experience and interest in this SOC we may share one of the first samples we build, so they can help on the Linux support.

The schematic of IMX8QM-TUKHLA Revision A is uploaded for review on out ftp.

S3-OLinuXino Open Source Hardware Linux dual camera board status uppdate April 2021

S3-OLinuXino is small open source hardware Linux computer with Ethernet, dual camera interface, running mainline uboot and Linux Kernel 5.12.

Our hardware went through few iterations, but last Revision.C now is in production and we will have it for sale on our web at the end of the April.

This board has small PoE plug-on top module which adds PoE functionality, so the whole setup board + cameras can be powered via Ethernet.

The camera connectors are made compatible with OV2640 2Mpix camera and Raspberry Pi Camera.

S3-OLinuXino has LCD connector where LCD-OLinuXino displays can be connected.

WiFi/BT module adds wireless functionality.

STMP157-SOM-512-IND industrial grade system on module status update April 2021

STMP157-SOM-512 is functional drop in replacement for A13-SOM-512 and have exactly the same features, but is industrial grade -40+85C.

All connectors have same signals on the both boards:

For STMP157-SOM-512 we made special STMP1(A13)-SOM-EVB:

With this board all SOM features can be explored:

  • two USB High Speed Hosts
  • one USB-OTG
  • WiFi/BT module with PCB antenna and option for external antenna
  • 100MB Ethernet
  • Flash connector for attaching SPI, NAND, eMMC Flash modules
  • Audio input, output
  • UEXT connector
  • LCD connector for LCD-OLinuXino-XX
  • GPIO connector

Needless to say the EVB works with A13-SOM-512 also.

Mainline uboot and Linux Kernal 5.12 with support for all peripherals is available.

STMP157-SOM-512 and STMP1(A13)SOM-EVB boards are now in production and will be on the web for sale by the end of April.

STMP157-OLinuXino-LIME2-IND status update April 2021

The last issues with STM32MP1 mainline Linux kernel support were resolved and now we run STMP157-OLinuXino-LIME2 in production!

Revision B fixes all hardware issues in the initial prototype. STMP157-OLINUXINO-LIME2 is complete analog of A20-OLinuXino-LIME2 which is one of our best selling Allwinner board.

Mainline uboot and Linux kernel 5.12 images are available with all periperials working.

We will have STMP157-OLINUXINO-LIME2 on our web for sale by the end of April.

This is also our first board with Ethernet supporting Precise Time Protocol and Time Sensitive Networking implemented.

Hello Caribbean we are coming!

Covid19 damaged the Semiconductor industry.

The weak demand in 2020 made many silicon companies stop producing and simply sell what they had in stock.

Now that the economy is reviving, they can’t start producing again because the raw materials are also missing. Restarting the industry takes time and in the meantime even basic voltage regulators and digital logic are missing on the market.

The DDR memory prices became x2 times higher. The 7 and 10″ LCDs vanished from the market due to the high demand for tablets for remote learning.

Microcontrollers from ST, NXP, Microchip are with lead times of 45 weeks!

This is why we at Olimex decided to write off 2021 as a year for electronics manufacturing and to move out for the next 45 weeks to Caribbean beaches!

Looking forward to see you again in 2022!

IEEE 1588 Precision Time Protocol (PTP) is implemented for the industrial grade Open Source Hardware Linux computer STMP1-OLinuXino-LIME2

The Time Sensitive Networking (TSN) is for real-time communication with hard, non-negotiable time boundaries for end-to-end transmission latencies.

The main use of TSN is for industrial machine controllers, robots etc.

For this purpose all devices in this network need to have a common time reference and therefore, need to synchronize their clocks among each other. Only through synchronized clocks, it is possible for all network devices to operate in unison and execute the required operation at exactly the required point in time.

The time in TSN networks is usually distributed from one central time source directly through the network itself using the IEEE 1588 Precision Time Protocol, which utilizes Ethernet frames to distribute time synchronization information.

Linutronix helped to implement IEEE 1588 PTP on STMP1-OLinuXino-LIME2.

For Uboot changes Olimex Uboot was used as base. The Kernel patch is sent upstream and can be seen on the mailing list

https://lore.kernel.org/linux-devicetree/20210316080644.19809-1-kurt@linutronix.de/

We also apply these patches in our next STMP1 Linux images release.

The results is correctly working PTP:

# ptp4l -H -2 -i eth0 --tx_timestamp_timeout=40 -f /etc/gPTP.cfg -m
|ptp4l[1434.665]: rms    5 max   13 freq  -1069 +/-   7 delay   325 +/-   0
|ptp4l[1435.666]: rms    8 max   16 freq  -1068 +/-  11 delay   325 +/-   0
|ptp4l[1436.667]: rms   10 max   19 freq  -1060 +/-  12 delay   324 +/-   0
|ptp4l[1437.668]: rms    8 max   17 freq  -1055 +/-  10 delay   322 +/-   0
|ptp4l[1438.668]: rms    6 max    9 freq  -1057 +/-   9 delay   322 +/-   0

Quad Core 64bit Open Source Hardware Linux computer A64-OLinuXino now have version with external antenna

A64-OLinuXino is Open Source Hardware Quad core 64 bit Linux Computer.

We also offer nice metal box for it named BOX-A64-BLACK:

The only problem was that A64-OLinuXino have option for on board WiFi-BT but it uses PCB antenna and when put in box the communication range was decreasing signiificantly.

New revision of A64-OLinuXino board now supports both internal PCB antenna and U.FL externally attached 2.4Ghz antenna.

So A64-OLinuXino can be put inside the metal box and have the antenna outside:

Previous Older Entries Next Newer Entries