LIME2-SHIELD adds CAN, second SD-card, two UEXT connectors, Audio IN and OUT, breadboard friendly GPIOs to A20-OLinuXino-LIME2 Open Source Hardware Linux computer

A20-OLinuXino-LIME2 is with small compact design, this is why we couldn’t put on it all connectors for the functionality this board offers.

The existing 0.05″ step connectors are OK for cables and shields, but are pain when you want to breadboard something or to attach UEXT module.

This is why we made LIME2-SHIELD open source hardware shield. It has these signals available:

LIME2-SHIELD User manual explains how to prepare your SD-card for booting Linux on A20-OLinuXino-LIME2, then how to setup the board with different scripts and device tree.

Demo codes how to work with GPIO, I2C, SPI, CAN with C, Python and console are included:

Allwinner keep their promise for long term supply of T2 (industrial A20) SOC. If you wonder how 60K of Allwinner T2 SOC looks like you can see now

T2 is the industrial version of A20 – the most successful SOC in Allwinner history. It keeps selling for more than 8 years now and demand is steady.

We are proud that our OSHW designs with A20 are part of this success story.

T2 can work in extended temperature grade and is more expensive than A20, so the demand is not so big and used just by specific customers like in automotive and industrial equipment. During the last COVID-19 economy slow down these customers decreased and Allwinner stock of T2 was sold out. While NXP, ST etc always keep some kind of guarantee that they will produce this processor for XX years, Chinese companies are practical, they sell as long as it’s profitable for them and if demand is low they just stop.

This is why many people are afraid to place Chinese SOC in their products, they are afraid that this chip may stop being produced at some point of time and their design need to be changed.

Fortunately for Olimex our sales are big enough to be interesting and supported by Allwinner. We have enough business to place custom orders even for chips which are now with status “obsolete” and Allwinner keep producing them for us.

T2 automotive/industrial market for Allwinner now is not big enough for them to justify keeping it in stock, but Olimex placed order for these in January and 60Kpcs hit our warehouse few weeks ago.

The label show these T2 SOC are manufactured 18 of May 2020 🙂

So Allwinner keeps their part of the deal for long term delivery and manufacture for us even SOCs which are not available for sale officially, this means we can keep producing our boards with Allwinner SOC for our customers and they are safe with us.

Olimage – Mainline Linux images building script for all of our OLinuXino and SOM boards

DEBIANubuntu_904

We work for more than 6 month on our own Linux building script and now we are ready with it’s initial release, which is now on GitHub .

Why do we need it? The number of our boards with all variant hit over 70 pcs when you add to them the different LCD combinations and other peripherials the support and test of these images became little hell. Our latest Armbian based image was released 3-4 months ago as we didn’t manage to properly test all board features in the newer images.

So we first made universal images for all our groups of boards (based on the SOC used) and EEPROM where we store info so uboot and kernel to may recognize the board and configure properly the parameters at boot time.

Then we decided to make one-for-all build script which will automatically build images with recent kernel and uboot automatically.

We had to leave Armbian as we wanted things to be more under our control and decision. Also we wanted everything to be 100% tested when released. Armbian official builds are not tested at hardware level other than to see board boots, so many boards are with peripheral conflicts and we had to apply our patched on Armbian anyway to adjust the images for our boards.

Our official images now are at http://images.olimex.com.

There is release folder where we have minimal and basic images for Debian and Ubuntu and testing folder where new uboot and kernel images will be built and kept until properly tested. For instance Ubuntu 20.04 LTS and kernel 5.6 images will be put there in the next couple of weeks.

The Olimage script and repositories are developed in our internal Gitlab and will be only push to Github when everything is properly tested and images moved to release folder. Also we push all our patches upstream.

With the current kernel and uboot users can easily generate any Linux distribution as it’s matter of building rootfs.

Moving to the next release would be possible simple by

sudo apt-get update && apt-get dist-upgrade

then re-boot of the board, so when we release new images all you have to do is to run the above commands and you will have the latest images.

For the moments the builder has A10, A13, A20, A64.

iMX233 and RK3188 SOCs are obsolete and not produced anymore by Rockchip and NXP, so they will be not included in the script. We still produce and sell these boards, but they will be discontinued when we use our existing SOC stock.

AM3352-SOM and AM3359-SOM will be included in the script, but we have no fixed date when, as we have to put earlier S3-OLinuXino and STMP1-OLinuXino-LIME2 which are with higher priority.

A64-OLinuXino got mainline Linux Kernel 5.0 images

Linux-Kernel-5-featured

Linux kernel 5.0 was just released and as we were working this week to the release of mainline Linux image for A64-OLinuXino (as till now it has the ugly android based 3.10 kernel) we decided to release latest kernel.

The images are available on our FTP.

There are two images Debian headless or Ubuntu desktop.

Known issues with these images:

  • LCDs are not supported yet, HDMI output is only available, we need one more week to figure out how to automatically detect if the Ethernet or LCD are enabled (there is jumper on the board which switch between LCD or Ethernet as both share pins and can’t work together). So to make the DTS configurations  automatic at boot time.
  • eMMC do not work in the fastest possible mode yet. We need some time, right now 50MB/s is the max speed to read write instead of 100-200MB/s which the installed eMMC supports, we will update the image soon with HS200/400 modes enabled.
  • No CPU thermal. A64 has 3 thermal zones – CPU, GPU0 and GPU1. The driver doesn’t support monitoring them.

How to build the images is explained here.

Mainline Linux Kernel 5.0 images for A13, A20 and A33 OLinuXino and SOMs is in progress.

Allwinner released T2 SOC working -40+85C targeting automotive entertainment, it’s re-branded A20 with expanded operating temperature

T2

Allwinner released recently their T2 SOC targeting automotive entertainment panels.
Looking at the specs we saw that it suspiciously looks like A20.

t2-blk

This is not the first time Allwinner releases their old silicons under new names like A13-R8, A33-R16, R40-T3 etc.  I personally find this quite confusing.

We got some T2 samples and now assembly A20-OLinuXino-LIME, A20-OLinuXino-LIME2, A20-OLinuXino-MICRO and A20-SOM with them to test for hardware and software compatibility.
Once we are sure everything works OK will release T2-OLinuXino boards which will be with industrial temperature grade -40+85C for all components on the boards.

T2-abs

To this moment all our A20-XXX-IND boards has components for or exceeding -45+85C, but A20 SOC was specified -20+70C.

SPECTRE and MELTDOWN attacks and OLinuXino and SOMs

meltdown-and-spectre-vulnerability

The #spectre and #meltdown attacks were subject to great concerns in the last weeks.

Eben Upton made brilliant explanation of how and why they work in his blog post.

There is already project on Github which can be used to test if your ARM AArch64 processor is vulnerable to such attacks.

As Cortex-A7 and Cortex-A53 are not affected of these attacks this means all our boards with A20, A33, A64 processors are immune.

For A10, A13, AM335X (Cortex-A8), RK3188 (Cortex-A9) we need to do some further investigation.

A13-SOM-512 Android image for 4.3″ LCD with touchscreen released

A13-4.3-android

We got request from customer for Android image which supports 4.3″ LCD with touchscreen. He did his development with Beagle Bone, but wanted to optimize the cost for production so A13-SOM512 price was very attractive, but default Allwinner Android image although allow you to define smaller LCD resolutions has no working touchscreen calibration for small LCDs, also default Android screen was not set well and status bar was taking big portion of the screen.

Here is the newly released SD-card image for A13-SOM512 Android with 4.3″ LCD with touchscreen display.

A13-som-android

Now you can develop your embedded Andoid application on low cost board with small LCD.

TERES I assembly workshop this Saturday!

workshop

This Saturday 21st of October we will have TERES I assembly workshop!

Customers from Bulgaria who placed orders for TERES I DIY Open Source laptop will have their laptop kits ready and are invited to come and we assembly them together!

The assembly workshop will be in OLIMEX Training Building and will start at 14.00 o’clock.

No need to have Laptop kit to participate, everyone is welcome to join us.

A20-OLinuXino-LIME2 now with PCB revision G

a20-olinuxino-lime2

A20-OLinuXino-LIME2 now is assembling on same PCB Revision G as A20-OLinuXino-LIME2-eMMC.

What are the improvement:

  • Ethernet PHY is changed to RTL8211E replacing the obsolete RTL8211CL no need for kernel patches;
  • we drop the odd shape which was necessary to fit LIME2 in the plastic box as we now have range of metal boxes;
  • the four mount holes now have grounding for better contact with chassis;

Meantime we silently work on further improvement for next revision (to be released March 2017):

  • adding SPI boot Flash;
  • replacing RTL8211E to industrial grade PHY, so the board can be produced completely in -40+85C operating temperature;

 

A64-OLinuXino-eMMC rev.B OSHW 64 bit ARM development board prototypes are testing

A64-OLinuXino-1

A64-OLinuXino-2

What you see is our improved REV.B of A64-OLinuXino. What’s new:

  • Gigabit PHY is now KSZ9031 from MICROCHIP/MICREL which allow board to be produced in both commercial and industrial grade!
  • DDR3 is now DDR3L for lower power
  • we add SPI flash footprint U12
  • Audio input now is jumper selectable between LINE-IN and MIC-IN
  • eMMC now can work on software selectable voltage 3.3V or 1.8V which would allow faster speeds
  • status LED is attached to port PE17
  • size 90×60 mm

Now we do final software tests and if everything is OK we will run production.

 

Previous Older Entries