New OSHW board with STM32F303 now can have CAN and USB working at same time, operates from -40+85C and with power supply from 4.2-40VDC

OLIMEXINO-STM32F3 is re-design of our popular OLIMEXINO-STM32 board.

What is new?

  • STM32F303RCT6TR is used which allow CAN and USB to work at the same time. The F1 Series of STM32 shared same buffer for both USB and CAN which leads to not be able to work with both CAN and USB at the same time. This is solved in F3 series
  • Increased amount of memory: 256KB Flash, 40KB RAM
  • Power supply is now from 4.2VDC up to 40VDC which allow OLIMEXINO-STM32F3 to work in Automotive applications without special power converters
  • Industrial temperature grade -40+85C
  • Real Time Clock backup battery holder for CR2032 Li battery
  • Lower cost

The price of OLIMEXINO-STM32F3 is EUR 14.95 for single unit and drops to EUR 11.96 for 50+ pcs order.

The work on our most complex Open Source Hardware Linux board started – meet the Tukhla iMX8QuadMax SOC based board to be designed with KiCAD

We started working on our most complex OSHW board with KiCAD.

iMX8 is broad range of very different ARM architectures under same name which some people may find quite confusing.
Here is the table chart:

You can see by yourself:

  • iMX8X is quite humble with up to x4 Cortex-A35+Cortex-M4F cores, something less capable than Allwinner A13 or STM32MP1XX
  • iMX8M, Nano/Mini/Plus is x4 Cortex-A53 + Cortex-A7/M4F something in the range of power of Allwinner A64
  • finally iMX8QuadMax comes with different configurations, but the high end is Octa-core with x2 Cortex-A72 + x4 Cortex-A53 + x2 Cortex-M4F and is more powerful than the popular Rockchip RK3399

Why we did started working on such monster?

Company from EU which values the OSHW recognized the absence of high end open source Linux board and asked us to design one. They offered to cover all associated design costs. They specially requested this to be not yet another RK3399 board, but based on SOC with proper documentation and software support. NXP’s high end iMX8QuadMax matched their requirements perfectly.

Currently all powerful Cortex-A72 comes from Chinese or Korean origin and are always closed projects, the only published info in best case is PDF schematic which can’t be verified i.e. the final product may or may not match what they publish. The popular Raspberry Pi go even further and their “schemaitcs” are just connector diagrams.

This is how the Tukhla project was born, it will have:

  • MIMX8QM5AVUFFAB Octa-core SOC with: ( x2 Cortex-A72, x4 Cortex-A53, x2 Cortex-M4F, x4 GPUs with 16 Vec4-Shader GPU, 32 compute units OpenGL® ES 3.2 and Vulkan® support Tessellation and Geometry Shading, Split-GPU architecture enables 2x 8 Shader Cores, 4k h.265 Decode, 1080p h.264 encode)
  • x2 LPDDR4 x32 databus RAM memory with up to 16GB of RAM configuration
  • PMU taking all power lines from single 12V/4A source
  • micro SD card
  • eMMC Flash with differnt sizes
  • QSPI Flash
  • x1 SATA for external HDD/SSD drives
  • x2 single lane PCIe with M2 connectors for NVMe
  • HDMI input 1.4 RX with HDCP 2.2
  • HDMI output 2.0 TX with HDCP 2.2 4K
  • USB 2.0 OTG
  • USB 3.0 HOST
  • x2 Gigabit Ethernet
  • x2 MIPI CSI camera connectors

The price of MIMX8QM5AVUFFAB alone is around EUR 100 in small quantities and currently LPDDR4 4GB cost EUR 35, LPDDR4 8GB cost EUR 50, LPDDR4 16GB cost EUR 180.

So with BOM over EUR 200 this board will not be affordable for the most of Raspberry Pi $35 price range users.

This board targets professionals, who need high performance board and being not dependent by Chinese SOC vendors. With all hardware open, which gives them security for their business as the design is public.

iMX8QuadMax SOC is available in automotive AEC-Q100 Grade 3 (-40° to 125° C Tj), Industrial (-40° to 105° C Tj), Consumer (-20° to 105° C Tj)

Some of the features like HDMI input are not present in the Chinese SOCs at all.

iMX8QuadMax may have DSP and incorporate Vision and Speech Recognition interactivity via a powerful vision pipeline and audio processing subsystem.

The Software support include: Android™, Linux®, FreeRTOS, QNX™, Green Hills®, Dornerworks XEN™.

iMX8QuadMax is fully supported on NXP’s 10 and 15-year Longevity Program

Tukhla means Brick in Bulgarian (and other Slavish languages) and it will be the OSHW building block for whole range of different solutions.

How long it will take to finish this design?

We honestly don’t know. It took more than month just to capture the schematic in the state it is now:

There is long path now to create and verify all component packages (just the SOC is in 1313 BGA ball package), verify the schematic signals, place the components on the PCB, route high speed signals manually.

It may be 6 months or more. We got unofficial info that NXP engineers spent more than year to make the NXP iMX8QMax demo board.

ESP32-DevKit-Lipo, ESP32-POE and ESP32-POE-ISO boards now have option with external antenna and all our ESP32 boards can be build in extended temperature range -40+105C for demanding applications


Our popular ESP32-DevKit-Lipo, ESP32-POE and ESP32-POE-ISO now has option with external antenna, so you can use them even with metal boxes. The external antenna extends their range by 20-30%.

We stock now ESP32 modules with 16MB of Flash, so if you run out of memory you can order any of our ESP32 boards with 16MB Flash module too.

Also we have ESP32 modules in extended temperature range -HT (high temperature) which works from -40C up to 105C for demanding applications.