Our most complex OSHW board – the iMX8QuadMax Tukhla project first prototypes are assembled and they boot!

The Tukhla project was completed in April 2021. However, due to the COVID-19 semiconductor madness, we were unable to assemble prototypes because of the lack of semiconductors. The development of this project is financed by Ignitial SAS, a company based in France.

Finally we got enough chips to complete the first three prototypes and we assembled them last week before the May’s Holidays.

Tukhla has these features:

MIMX8QM5AVUFFAB 8-core processor:

  • x2 Cortex-A72 running at 1.6Ghz
  • x4 Cortex-A53 running at 1.2Ghz
  • x2 Cortex-M4F running at 264Mhz
  • 8 GB LPDR4 64 bit @1600Mhz

Connectivity:

  • 1× PCIe (2-lanes)
  • 1× USB 3.0 with PHY
  • 1x USB 3.0 dual role with PHY
  • 1× SATA 3.0
  • 2× 1Gb Ethernet with AVB
  • 1× CAN/CAN-FD
  • 1x HDMI Rx

GPU:

  • 2xGC7000 XSVX
  • 16× Vec4 shaders with 64 execution units
  • Dual independent 8-Vec4 shader GPUs or a combined 16-Vec4 shader GPU
  • OpenGL 3.0, 2.1
  • OpenGL ES 3.2, 3.1 (with AEP), 3.0, 2.0, and 1.1
  • OpenCL 1.2 Full Profile and 1.1
  • OpenVG 1.1
  • Vulkan

VPU:

  • H.265 decode (4Kp60)
  • H.264 decode (4Kp30)
  • WMV9/VC-1 imple decode
  • MPEG 1 and 2 decode
  • AVS decodeMPEG4.2 ASP,
  • H.263, Sorenson Spark decode
  • Divx 3.11 including GMC decode
  • ON2/Google VP6/VP8 decode
  • RealVideo 8/9/10 decode
  • JPEG and MJPEG decode
  • 2× H.264 encode (1080p30)

Display:

  • Supports single UltraHD 4Kp60 display
  • or up to 4 independent FullHD 1080p60 displays
  • 2× MIPI-DSI with 4 lanes each
  • 1× HDMI-TX/DisplayPort
  • 2× LVDS Tx with 2 channels of 4 lanes each

Camera:

  • 2× MIPI-CSI with 4-lanes each, MIPI DPHYSM v1.

Security:

  • Advanced High Assurance Boot (AHAB) secure & encrypted boot

Operating temperature:

  • Automotive AEC-Q100 Grade 3 -40+125C

We now experiment with NXP Yocto build images to verify everythings is working correctly, before we run production.

Our most complex Open Source Hardware board made with KiCad – the octa core iMX8 Quad Max – Tukhla is completely routed and now on prototype production

The PCB routing of our most complex board – IMX8QM-Tukhla is complete and ready for first prototype build.

We started this project June-July 2020. Due to the Covid19 the development took 10 months although only 6 month of active work was done, due to lock downs, ill developers and so on troubles.

Now the board is completely routed and has these features:

Main SOC MIMX8QM5AVUFFAB which is member of iMX8 Quad Max series – the most powerful iMX8 SOC line from NXP.


MIMX8QM5AVUFFAB has 8 cores:

  • x2 Cortex-A72 running at 1.6Ghz
  • x4 Cortex-A53 running at 1.2Ghz
  • x2 Cortex-M4F running at 264Mhz

Memory:

  • 64-bit LPDDR4 @1600 MHz

Connectivity:

  • 1× PCIe (2-lanes)
  • 1× USB 3.0 with PHY
  • 1x USB 3.0 dual role with PHY
  • 1× SATA 3.0
  • 2× 1Gb Ethernet with AVB
  • 1× CAN/CAN-FD
  • 1x HDMI Rx

GPU:

  • 2xGC7000 XSVX
  • 16× Vec4 shaders with 64 execution units
  • Dual independent 8-Vec4 shader GPUs or a combined 16-Vec4 shader GPU
  • OpenGL 3.0, 2.1
  • OpenGL ES 3.2, 3.1 (with AEP), 3.0, 2.0, and 1.1
  • OpenCL 1.2 Full Profile and 1.1
  • OpenVG 1.1
  • Vulkan

VPU:

  • H.265 decode (4Kp60)
  • H.264 decode (4Kp30)
  • WMV9/VC-1 imple decode
  • MPEG 1 and 2 decode
  • AVS decodeMPEG4.2 ASP,
  • H.263, Sorenson Spark decode
  • Divx 3.11 including GMC decode
  • ON2/Google VP6/VP8 decode
  • RealVideo 8/9/10 decode
  • JPEG and MJPEG decode
  • 2× H.264 encode (1080p30)

Display:

  • Supports single UltraHD 4Kp60 display
  • or up to 4 independent FullHD 1080p60 displays
  • 2× MIPI-DSI with 4 lanes each
  • 1× HDMI-TX/DisplayPort
  • 2× LVDS Tx with 2 channels of 4 lanes each

Camera:

  • 2× MIPI-CSI with 4-lanes each, MIPI DPHYSM v1.

Security:

  • Advanced High Assurance Boot (AHAB) secure & encrypted boot

Operating temperature:

  • Automotive AEC-Q100 Grade 3 -40+125C

To the best of our knowledge there is no Open Source Board so far which to be so complex and advanced.

Now we are running the first prototypes and crossing fingers everything to work 🙂

With the current state of the semiconductor industry production will not be possible to be run soon.

Linux support will need attention as NXP has no mainline Linux for this SOC, but only Yocto build for old kernel (4.14.98_2.3.3).

If there are people with experience and interest in this SOC we may share one of the first samples we build, so they can help on the Linux support.

The schematic of IMX8QM-TUKHLA Revision A is uploaded for review on out ftp.

The work on our most complex Open Source Hardware Linux board started – meet the Tukhla iMX8QuadMax SOC based board to be designed with KiCAD

We started working on our most complex OSHW board with KiCAD.

iMX8 is broad range of very different ARM architectures under same name which some people may find quite confusing.
Here is the table chart:

You can see by yourself:

  • iMX8X is quite humble with up to x4 Cortex-A35+Cortex-M4F cores, something less capable than Allwinner A13 or STM32MP1XX
  • iMX8M, Nano/Mini/Plus is x4 Cortex-A53 + Cortex-A7/M4F something in the range of power of Allwinner A64
  • finally iMX8QuadMax comes with different configurations, but the high end is Octa-core with x2 Cortex-A72 + x4 Cortex-A53 + x2 Cortex-M4F and is more powerful than the popular Rockchip RK3399

Why we did started working on such monster?

Company from EU which values the OSHW recognized the absence of high end open source Linux board and asked us to design one. They offered to cover all associated design costs. They specially requested this to be not yet another RK3399 board, but based on SOC with proper documentation and software support. NXP’s high end iMX8QuadMax matched their requirements perfectly.

Currently all powerful Cortex-A72 comes from Chinese or Korean origin and are always closed projects, the only published info in best case is PDF schematic which can’t be verified i.e. the final product may or may not match what they publish. The popular Raspberry Pi go even further and their “schemaitcs” are just connector diagrams.

This is how the Tukhla project was born, it will have:

  • MIMX8QM5AVUFFAB Octa-core SOC with: ( x2 Cortex-A72, x4 Cortex-A53, x2 Cortex-M4F, x4 GPUs with 16 Vec4-Shader GPU, 32 compute units OpenGL® ES 3.2 and Vulkan® support Tessellation and Geometry Shading, Split-GPU architecture enables 2x 8 Shader Cores, 4k h.265 Decode, 1080p h.264 encode)
  • x2 LPDDR4 x32 databus RAM memory with up to 16GB of RAM configuration
  • PMU taking all power lines from single 12V/4A source
  • micro SD card
  • eMMC Flash with differnt sizes
  • QSPI Flash
  • x1 SATA for external HDD/SSD drives
  • x2 single lane PCIe with M2 connectors for NVMe
  • HDMI input 1.4 RX with HDCP 2.2
  • HDMI output 2.0 TX with HDCP 2.2 4K
  • USB 2.0 OTG
  • USB 3.0 HOST
  • x2 Gigabit Ethernet
  • x2 MIPI CSI camera connectors

The price of MIMX8QM5AVUFFAB alone is around EUR 100 in small quantities and currently LPDDR4 4GB cost EUR 35, LPDDR4 8GB cost EUR 50, LPDDR4 16GB cost EUR 180.

So with BOM over EUR 200 this board will not be affordable for the most of Raspberry Pi $35 price range users.

This board targets professionals, who need high performance board and being not dependent by Chinese SOC vendors. With all hardware open, which gives them security for their business as the design is public.

iMX8QuadMax SOC is available in automotive AEC-Q100 Grade 3 (-40° to 125° C Tj), Industrial (-40° to 105° C Tj), Consumer (-20° to 105° C Tj)

Some of the features like HDMI input are not present in the Chinese SOCs at all.

iMX8QuadMax may have DSP and incorporate Vision and Speech Recognition interactivity via a powerful vision pipeline and audio processing subsystem.

The Software support include: Android™, Linux®, FreeRTOS, QNX™, Green Hills®, Dornerworks XEN™.

iMX8QuadMax is fully supported on NXP’s 10 and 15-year Longevity Program

Tukhla means Brick in Bulgarian (and other Slavish languages) and it will be the OSHW building block for whole range of different solutions.

How long it will take to finish this design?

We honestly don’t know. It took more than month just to capture the schematic in the state it is now:

There is long path now to create and verify all component packages (just the SOC is in 1313 BGA ball package), verify the schematic signals, place the components on the PCB, route high speed signals manually.

It may be 6 months or more. We got unofficial info that NXP engineers spent more than year to make the NXP iMX8QMax demo board.