Building Marine Chartplotter with A20-OLinuXino-LIME and LCD-OLinuXino-7 in metal frame

Matthias sent us link to his project of Marine Chartplotter made with A20-OLinuXino-LIME open source hardware Linux computer + LCD-OLinuXino-7 and LCD7-METAL-FRAME

The power supply is done with DCDC-36-5-12

Allwinner keep their promise for long term supply of T2 (industrial A20) SOC. If you wonder how 60K of Allwinner T2 SOC looks like you can see now

T2 is the industrial version of A20 – the most successful SOC in Allwinner history. It keeps selling for more than 8 years now and demand is steady.

We are proud that our OSHW designs with A20 are part of this success story.

T2 can work in extended temperature grade and is more expensive than A20, so the demand is not so big and used just by specific customers like in automotive and industrial equipment. During the last COVID-19 economy slow down these customers decreased and Allwinner stock of T2 was sold out. While NXP, ST etc always keep some kind of guarantee that they will produce this processor for XX years, Chinese companies are practical, they sell as long as it’s profitable for them and if demand is low they just stop.

This is why many people are afraid to place Chinese SOC in their products, they are afraid that this chip may stop being produced at some point of time and their design need to be changed.

Fortunately for Olimex our sales are big enough to be interesting and supported by Allwinner. We have enough business to place custom orders even for chips which are now with status “obsolete” and Allwinner keep producing them for us.

T2 automotive/industrial market for Allwinner now is not big enough for them to justify keeping it in stock, but Olimex placed order for these in January and 60Kpcs hit our warehouse few weeks ago.

The label show these T2 SOC are manufactured 18 of May 2020 🙂

So Allwinner keeps their part of the deal for long term delivery and manufacture for us even SOCs which are not available for sale officially, this means we can keep producing our boards with Allwinner SOC for our customers and they are safe with us.

Open Source Hardware Linux board with industrial grade -40+125C temperature STMP1-OLinuXino-Lime2 prototype is live

We have progress on this board software. It now boots, we have been fighting the hardware and of course the issue was RTFM in this case RTFE (Errata) where STM well documented thar this chip requires oscillator and will not work with only crystal. We were misleaded by their kit schematic where they made provisions for both crystal and osciallator and being cheap we first bet on the crystal 🙂 .

Anyway after replacing the crystal with oscillator STMP1-OLinuXino-Lime2 got alive and here is the boot log: https://pastebin.com/ev94Jbk0

Our design is quite different from STM demo kit, we use different PMU, PHY HDMI so many things have to be done on the Linux support, but the results so far are very good.

The Open Source Hardware OLinuXino boards are with new Linux Kernel 5.6 scripts to move Linux OS to eMMC or SATA are included

We are pleased to announce that now the images at http://images.olimex.com/release/ are with the lates Linux Kernel 5.6

All these are build with our Olimage script.

We still keep Ubuntu Bionic 18.04 LTS distribution and didn’t move to 20.04 LTS yet.

To addition for script which set boot from eMMC we add new one which allow you to boot from SATA.

The boot from eMMC and SATA is enabled for OLinuXino boards which has SPI Flash on them like:

  • A20-OLinuXino-LIME-e16Gs16M
  • A20-OLinuXino-LIME-e4Gs16M
  • A20-OLinuXino-LIME-s16M
  • T2-OLinuXino-LIME-e8Gs16M-IND
  • T2-OLinuXino-LIME-s16M-IND
  • A20-OLinuXino-LIME2-e16Gs16M
  • A20-OLinuXino-LIME2-e4Gs16M
  • A20-OLinuXino-LIME2-s16M
  • T2-OLinuXino-LIME2-e8Gs16M-IND
  • T2-OLinuXino-LIME2-s16M-IND
  • A20-OLinuXino-MICRO-e16Gs16M
  • A20-OLinuXino-MICRO-e4Gs16M
  • A20-OLinuXino-MICRO-s16M
  • T2-OLinuXino-MICRO-e8Gs16M-IND
  • T2-OLinuXino-MICRO-s16M-IND
  • A20-SOM-e16Gs16M
  • T2-SOM-e8Gs16M-IND
  • A20-SOM204-1Gs16Me16G-MC
  • T2-SOM204-1Gs16Me4G-C-I
  • T2-SOM204-1Gs16Me8G-MC-I

To make board booting from eMMC you have to boot from SD-card then execute:

$ sudo olinuxino-sd-to-emmc

then wait until script moves the OS to eMMC, remove the SD-card and reboot.

Similar if you want to make board boot from SATA you have to boot from SD-card then execute:

$ sudo olinuxino-sd-to-sata

New Plastic Box design for A20-OLinuXino-LIME2 with LiPo6600mAh battery

PLASTIC-BOX-ASM1

Few days ago we got parcel with some plastic parts sent to us from Mike Bosschaert.

PLASTIC-BOX-ASM2

we inserted LIME2 inside, the tolerances are tight and it’s hard to put the board in but even harder if you want to pull it from the plastic.

PLASTIC-BOX-ASM3

There is place for LiPO6600mAh battery with holder, but the battery cable is too short to plug in the board connector and need to be cut and extended. If the battery is put at left side of the PCB the cable may be enough.

PLASTIC-BOX-ASM4

The assembled box looks nice! Mike wrote that he designed it with FreeCAD and the model is printed in PLA using a Felix Pro 2 FDM printer. He provided all STL files under CC BY-SA 4.0 licensee and we add to OLINUXINO GitHub repository.

 

Olimage – Mainline Linux images building script for all of our OLinuXino and SOM boards

DEBIANubuntu_904

We work for more than 6 month on our own Linux building script and now we are ready with it’s initial release, which is now on GitHub .

Why do we need it? The number of our boards with all variant hit over 70 pcs when you add to them the different LCD combinations and other peripherials the support and test of these images became little hell. Our latest Armbian based image was released 3-4 months ago as we didn’t manage to properly test all board features in the newer images.

So we first made universal images for all our groups of boards (based on the SOC used) and EEPROM where we store info so uboot and kernel to may recognize the board and configure properly the parameters at boot time.

Then we decided to make one-for-all build script which will automatically build images with recent kernel and uboot automatically.

We had to leave Armbian as we wanted things to be more under our control and decision. Also we wanted everything to be 100% tested when released. Armbian official builds are not tested at hardware level other than to see board boots, so many boards are with peripheral conflicts and we had to apply our patched on Armbian anyway to adjust the images for our boards.

Our official images now are at http://images.olimex.com.

There is release folder where we have minimal and basic images for Debian and Ubuntu and testing folder where new uboot and kernel images will be built and kept until properly tested. For instance Ubuntu 20.04 LTS and kernel 5.6 images will be put there in the next couple of weeks.

The Olimage script and repositories are developed in our internal Gitlab and will be only push to Github when everything is properly tested and images moved to release folder. Also we push all our patches upstream.

With the current kernel and uboot users can easily generate any Linux distribution as it’s matter of building rootfs.

Moving to the next release would be possible simple by

sudo apt-get update && apt-get dist-upgrade

then re-boot of the board, so when we release new images all you have to do is to run the above commands and you will have the latest images.

For the moments the builder has A10, A13, A20, A64.

iMX233 and RK3188 SOCs are obsolete and not produced anymore by Rockchip and NXP, so they will be not included in the script. We still produce and sell these boards, but they will be discontinued when we use our existing SOC stock.

AM3352-SOM and AM3359-SOM will be included in the script, but we have no fixed date when, as we have to put earlier S3-OLinuXino and STMP1-OLinuXino-LIME2 which are with higher priority.

The Industrial grade -40+125C Open Source Hardware Linux board which is hardware compatible with A20-OLinuxino-LIME2 but with ST Microelectronics STM32MP1xx SOC STMP1-OLinuXino routing is complete

TOP1

BOT1

STMP1-OLinuXino routing is complete. It took 6 months from the idea to the finish.

Why it took so long? We had several times to re-design the schematics around the DDR memory and power supply.

Our goal was to make it pin to pin compatible with OLinuXino-LIME2 and we achieved it.

STMP1-OLinuXino has:

  • Same size as LIME2
  • Same GPIOs on same places
  • Ethernet, USB, battery Lipo, buttons, HDMI, SD-card on same places
  • same mount holes
  • 1GB DDR3 memory
  • Gigabit Ethernet interface
  • HDMI interface
  • LCD interface
  • 2x USB hosts and 1x USB-OTG
  • micro SD-card
  • GPIOs have similar interfaces on the same positions
  • LiPo battery charger and step up converter for battery operation
  • CAN interface

There are few differences:

  • we add Flash connector where different flash modules will be attached: NAND Flash, SPI Flash, eMMC Flash, so instead to keep many different versions of the board with different Flash options like LIME2 this will be done with exchangeable modules
  • we put the STM32MP1 SOC on bottom where adding heatsink do not interference with the top GPIO connectors and add-on boards

The STM32MP1 devices work at -20/40+125C operating temperature by default which makes them perfect for industrial applications.

There will be different versions with STM32MP151/153/157 as they share same BGA package, also there will be some versions with commercial temperature grade components for lower cost.  Our preliminary estimations are the prices to be between EUR 35 and 70 depend on the different configurations.

Open Source Hardware LIME2-SERVER user manual is uploaded and explains how to assembly and how to install Linux images of popular projects

LIME2-SERVERа

LIME2-SERVER is Linux server with only 2W consumption, A20-OLinuXino-LIME2 and option for HDD or SSD.

The server has bild-in LiPo battery which allow it to run for hours without external power supply, Gigabit Ethernet connection and power adapter 5V 2A.

Today we uploaded on GitHub the initial version of the user manual which explains how to assembly the boxes in case you didn’t bought it assembled.

Also basic instructions to use Ubuntu Bionic and Debian Buster images we provide.

KODI and NextCloud installation.

Additional info how to build and install Home Assistant, Yunohost, TOR server will be included in the next revision.

LCD-OLinuXino selection guide updated with LCD dimensions

Screenshot from 2020-03-31 14-12-10

The LCD-OLinuXino Selection guide now includes the LCD panel dimensions and thickness information.

BAY-HDD/SDD is easy way to add external storage to LIME and LIME2, now Pioneer-FreedomBox-HSK can have 2000GB external storage in robust enclosure

LIME2-SERVER8

BAY-HDD-500GB, BAY-HDD-1000GB, BAY-HDD-2000GB and BAY-SSD-512GB are external disks with special bridge board to plug in A20-OLinuXino-LIME and A20-OLinuXino-LIME2 servers providing all necessary connections and power supply for external disk.

It’s plug and play recognizable by Pioneer-FreedomBox-HSK and adds significant amount of storage to the platform.

 

Previous Older Entries