STMP157-SOM-EXT, STMP157-SOM-IND and STMP1(A13)-SOM-EVB are in stock!

Now our first STMP1 boards can be ordered on our web:

STMP1(A13)-SOM-EVB evaluation board (requires separate SOM)

STMP157-SOM-EXT extended temperature range -20+85C running on 800Mhz

STMP157-SOM-IND industrial temperature range -40+85C running on 650Mhz

IEEE 1588 Precision Time Protocol (PTP) is implemented for the industrial grade Open Source Hardware Linux computer STMP1-OLinuXino-LIME2

The Time Sensitive Networking (TSN) is for real-time communication with hard, non-negotiable time boundaries for end-to-end transmission latencies.

The main use of TSN is for industrial machine controllers, robots etc.

For this purpose all devices in this network need to have a common time reference and therefore, need to synchronize their clocks among each other. Only through synchronized clocks, it is possible for all network devices to operate in unison and execute the required operation at exactly the required point in time.

The time in TSN networks is usually distributed from one central time source directly through the network itself using the IEEE 1588 Precision Time Protocol, which utilizes Ethernet frames to distribute time synchronization information.

Linutronix helped to implement IEEE 1588 PTP on STMP1-OLinuXino-LIME2.

For Uboot changes Olimex Uboot was used as base. The Kernel patch is sent upstream and can be seen on the mailing list

https://lore.kernel.org/linux-devicetree/20210316080644.19809-1-kurt@linutronix.de/

We also apply these patches in our next STMP1 Linux images release.

The results is correctly working PTP:

# ptp4l -H -2 -i eth0 --tx_timestamp_timeout=40 -f /etc/gPTP.cfg -m
|ptp4l[1434.665]: rms    5 max   13 freq  -1069 +/-   7 delay   325 +/-   0
|ptp4l[1435.666]: rms    8 max   16 freq  -1068 +/-  11 delay   325 +/-   0
|ptp4l[1436.667]: rms   10 max   19 freq  -1060 +/-  12 delay   324 +/-   0
|ptp4l[1437.668]: rms    8 max   17 freq  -1055 +/-  10 delay   322 +/-   0
|ptp4l[1438.668]: rms    6 max    9 freq  -1057 +/-   9 delay   322 +/-   0

Open Source Hardware STMP1-OLinuXino-LIME2 industrial grade Linux computer update – Debian Buster and Ubuntu Focal with mainline Kernel 5.10.12 now supports almost everything

STMP1-OLinuXino-LIME2 Industrial grade Linux Computer project took us almost an year of work to build proper software support for our hardware with mainline uboot and kernel.

ST demo board uses Yocto with kernel 5.4, our images use Linux Kernel 5.10.12

These who monitor our Official images at https://images.olimex.com probably nottice that we already have images with Debian Buster and Ubuntu Focal for STM32MP1 where almost everything now work with mainline Linux Kernel 5.10.12.

  • We had lot of troubles around the Ethernet, but now it works pretty well!
  • CAN-FD – works!
  • Two USB High speed hosts with 1A current – works!
  • LCD – works
  • HDMI – works!
  • eMMC Flash boot – works!
  • PMU and LiPo charger battery support – works

Two things on this board left not complete:

  • low power modes
  • USB-OTG

New prototypes rev.B now are in production, the Chinese New Year will delay them to end of February. We hope meantime to solve these two last issues and run production.

UPDATE: As some people wanted to know what was the Ethernet issue we were struggling so long, I posted in the comment section.

For the USB-OTG my guess is that it’s also some silly issue so people may help:

STM32MP1 has two High speed USB hosts and one Full speed USB-OTG, here is snip from their Hardware development document:

Here is our schematic which follows above guide:

The two High Speed USB hosts work as expected, but the USB-OTG has issue summarized here: https://pastebin.com/i6G90kdg

What makes us a little bit suspicious is that STM in their own demo board didn’t follow their Hardware Guide and were wiring one of their High speed USB as OTG and connecting USB hub to the other, ignoring the Full speed USB at all.

Open Source Hardware Linux board with industrial grade -40+125C temperature STMP1-OLinuXino-Lime2 prototype is live

We have progress on this board software. It now boots, we have been fighting the hardware and of course the issue was RTFM in this case RTFE (Errata) where STM well documented thar this chip requires oscillator and will not work with only crystal. We were misleaded by their kit schematic where they made provisions for both crystal and osciallator and being cheap we first bet on the crystal 🙂 .

Anyway after replacing the crystal with oscillator STMP1-OLinuXino-Lime2 got alive and here is the boot log: https://pastebin.com/ev94Jbk0

Our design is quite different from STM demo kit, we use different PMU, PHY HDMI so many things have to be done on the Linux support, but the results so far are very good.

The Industrial grade -40+125C Open Source Hardware Linux board which is hardware compatible with A20-OLinuxino-LIME2 but with ST Microelectronics STM32MP1xx SOC STMP1-OLinuXino routing is complete

TOP1

BOT1

STMP1-OLinuXino routing is complete. It took 6 months from the idea to the finish.

Why it took so long? We had several times to re-design the schematics around the DDR memory and power supply.

Our goal was to make it pin to pin compatible with OLinuXino-LIME2 and we achieved it.

STMP1-OLinuXino has:

  • Same size as LIME2
  • Same GPIOs on same places
  • Ethernet, USB, battery Lipo, buttons, HDMI, SD-card on same places
  • same mount holes
  • 1GB DDR3 memory
  • Gigabit Ethernet interface
  • HDMI interface
  • LCD interface
  • 2x USB hosts and 1x USB-OTG
  • micro SD-card
  • GPIOs have similar interfaces on the same positions
  • LiPo battery charger and step up converter for battery operation
  • CAN interface

There are few differences:

  • we add Flash connector where different flash modules will be attached: NAND Flash, SPI Flash, eMMC Flash, so instead to keep many different versions of the board with different Flash options like LIME2 this will be done with exchangeable modules
  • we put the STM32MP1 SOC on bottom where adding heatsink do not interference with the top GPIO connectors and add-on boards

The STM32MP1 devices work at -20/40+125C operating temperature by default which makes them perfect for industrial applications.

There will be different versions with STM32MP151/153/157 as they share same BGA package, also there will be some versions with commercial temperature grade components for lower cost.  Our preliminary estimations are the prices to be between EUR 35 and 70 depend on the different configurations.