Open Source Software OpenMQTTGateway got initial support for Open Source Hardware ESP32-GATEWAY

OpenMQTTGateway project aims to concentrate in one Gateway different technologies like Bluetooth, LoRa, IR, lagacy RF 433/315, GSM/GPRS based devices and connect them with OpenHAB, Home Assistant, Jeedom, FHEM, Domotic etc platforms via MQTT protocol.

The list of the supported devices is long.

With recent PR initial support for ESP32-GATEWAY is add.

How to configure and use ESP32-CAM with Arduino IDE and Linux

ESP32-CAM is small low cost WiFi camera with OV2460 2Mpix sensor. It allows you to stream video and even to perform some small image filterings and face detection / recognition.

Unfortunately the AI Thinker vendor trying to keep cost as low as possible didn’t include USB programmer in it so the setup is a bit odd.

What do you need to play with ESP32-CAM ?

You need the camera of course and some cables and USB to serial converter which also provide enough 3.3V source to power the camera.

In this example we will use ESP-PROG-C which comes with set of cables and USB-CABLE-micro-1.8M

Step.1

Install Arduino IDE

Please go to arduino.cc and download and install latest Arduino IDE.

Step.2

Linux and CH340

CH340 Linux drivers has bad PLL settings for all Linux kernels before 5.5.

If your system happen to be with Linux Kernel before 5.5. here is the GitHub repository with the patch to install.

If you do not have this patch CH340 will work, but will not be able to communicate at speed over 115200 bps, with the patch up to 2Mbps communication is possible.

Step.3

Wire cables:

You need to connect ESP32-CAM and ESP-PROG this way:

ESP32-CAM GND —-> ESP-PROG GND

ESP32-CAM 3.3V —-> ESP-PROG 3.3V

ESP32-CAM U0T —-> ESP-PROG RXD

ESP32-CAM U0R —-> ESP-PROG TXD

For firmware uploading you need one more connection, which is necessary ESP32 to go in Bootloader mode:

ESP32-CAM IO0 —-> ESP32-CAM GND

Step.4

Configure Arduino for ESP32-CAM

Run Arduino. In the Files-Preferences add:

https://dl.espressif.com/dl/package_esp32_index.json

In Tools-Board-Board Manager search for ESP32 and install it:

Exit Arduino and Run it again so it loads new board data. From File-Examples select ESP32-Camera-CameraWebServer

In select camera model uncomment CAMERA_MODEL_AI_THINKER and comment all other:

Then enter SSID and PASSWORD for your WiFi router.

In Tools-Board select : ESP32Wrover Module

Speed 921600

Flash Frequency 80Mhz

Flash Mode QIO

Partition Scheme: Huge app

Port: the port where your ESP-PROG USB Serial is connected it may be „ttyUSB0“ if you are running Linux or COMxx if you run Windows

Compile and see if there are no errors:

Then Press RESET button on ESP32-CAM, release it and hit Upload button on Arduino IDE.

If you get this error under Linux:

This means that the access to ttyUSB0 is not enabled for your user and you have to run in terminal

$ sudo chown youruser /dev/ttyUSB0 

Where „youruser“ can be seen and try again.

If everything is OK you will see this picture:

Now you have to disconnect ESP32-CAM IO0 and GND and press reset. In serial monitor you will see this message:

when you open http://192.168.100.109/ you will see

Now you can play with the different settings!

New open source hardware board ESP32-S2-DevKit-Lipo breaks our internal record for ESP32 low power consumption

Screenshot from 2020-05-18 11-46-43

ESP32-S2 is new SOC from Espressif which has only WiFi connectivity but has much more GPIOs available than ESP32 and ESP8266, also it has USB native connection which opens lot of new possibility.

We already sell Espressif’s Saola-1R board which has ESP32-S2-WROVER module, but it’s not designed for battery operation and low power as uses general purposes LDOs and has no battery connection.

This is something we wanted to improve – we designed board with same module but add LiPo charger and now our ESP32-S2-DevKit-LiPo can operate on LiPo battery even when there is no external power supply, but on top of this we kept the same PCB dimensions and ESP32-S2-DevKit-Lipo is drop-in replacement for ESP32-S2-Saola-1R. We use same module with 2MB RAM and 4MB Flash so once you develop with Saola you can move to ESP32-S2-DevKit-Lipo and make your projects battery operated.

The new ESP32-S2-DevKit-Lipo uses ultra low power power supply circuit which makes current consumption during sleep only 6uA  (4uA of them are due to the battery measurement resistor divider) this is 10 times less than our other boards.

Prototypes are build now and we run production and will have these in stock by the beginnings of June.

USB-gLINK – Industrial Grade Open Source Hardware LTE cat 4 module for IoT with Navigation and LiPo battery support is in stock!

gLINK

USB-gLINK is Open Source Hardware Industrial grade -25+85ºC LTE cat 4 module optimized for IoT applications with integrated LiPo Battery power supply charger and Navigation. USB-gLINK operate on all GSM frequencies with 2G 3G 4G/LTE protocols, so you can use it worldwide.

USB-gLINK will work with OLinuXino OSHW Linux Computers, Beaglebone and Raspberry Pi and any other PC running Windows, Linux or Android.

The LTE speed is 150Mbps downlink and 50Mbps uplink, but is backward-compatible with existing EDGE and GSM/GPRS networks. This allows USB-gLINK to connect to any existing 2G, 3G and 4G network.

Inside USB-gLINK there is build in navigation which supports: GPS, GLONASS, BeiDou/Compass, Galileo and QZSS.

The networking supported protocols are : TCP / UDP / PPP / FTP / HTTP / NTP / PING / QMI / NITZ / SMTP / MQTT / CMUX / HTTPS / FTPS / SMTPS / SSL / MMS / FILE.

USB-gLINK can operate on these bands: B1 / B2 / B3 / B4 / B5 / B7 / B8 / B12 / B13 / B18 / B19 / B20 / B25 / B26 / B28 / B38 / B39 / B40 / B41, which covers every mobile operator anywhere in the world. This allow your solution based on USB-gLINK to be sold globally without hardware changes.

There are number of carriers who already approved the module used in USB-gLINK: Deutsche Telekom (Europe), Verizon/AT&T/Sprint/U.S. Cellular/T-Mobile (North America), Telus/Rogers (Canada)

These regulatory are passed: GCF (Global), CE (Europe), FCC/PTCRB (North America), IC (Canada), Anatel (Brazil), IFETEL (Mexico), SRRC/CCC/NAL (China), KC (South Korea), NCC (Taiwan, China), JATE/TELEC (Japan), RCM (Australia & New Zealand), FAC (Russia), NBTC (Thailand), IMDA (Singapore), ICASA (South Africa)

New NB-IoT-BC66 modules with size only 26×26 mm contain everything you need to add NB-IoT functionality in your next project

NB-IoT-BC66d

NB-IoT is low power wide area networking technology which uses existing GSM LTE technology and has many advantages versa LoRa:

  • GSM network quality of service
  • single GSM cell can talk to up to 100 000 devices
  • high communication speed 25.5 kbps up and downlink
  • secure communication using LTE encryption
  • better range than LoRa both in urban and rural area (* depend on cell operating frequency – best range is om 850Mhz)

NB-IoT is already deployed in many applications:

  • Remote metering of electricity, water and gas;
  • Environmental monitoring;
  • City waste management, parking management, Lighting management;
  • Storage monitoring, logistics;
  • Healthcare patient monitoring;
  • Agroculture monitoring and management, remote irrigationi;
  • Industrial machinery monitoring and control.

The only disadvantage is the need of SIM card from operator, but in Europe there are many options for low cost SIM cards, to not make advertisement we will not quote but prices start from EUR 1 per year.

We add 4 new modules in stock:

 

Open Source Hardware IoT boards ESP32-EVB and ESP32-GATEWAY now are available in industrial grade -40+85C

esp32-gateway-gpios

ESP32-EVB and ESP32-GATEWAY are two very popular IoT boards which are supported both by Arduino IDE and Espressif SDK.

Now we stock ESP32-EVB-IND and ESP32-GATEWAY-IND which are functionally same boards, but all components used in them work in industrial temperature grade -40+85C.

ESP32-WROVER-DevKit-Lipo Open Source Hardware board with 4MB Flash and 8MB PSRAM is in stock

ESP32-WROVER-DevKit-Lipo

ESP32-WROVER-DevKit-LiPo is new open source hardware board which uses ESP32-WROVER modules with 4MB Flash and 8MB PSRAM.  It keeps same layout as ESP32-DevKit-C and ESP32-DevKit-Lipo, so boards made for these modules will work drop in.

The only difference between ESP32-WROOM and ESP32-WROVER modules beside the more RAM is that WROVER module has no GPIO16 and GPIO17 which are used internally and not connected to the outside pins.

Open Source Hardware LIME2-SERVER user manual is uploaded and explains how to assembly and how to install Linux images of popular projects

LIME2-SERVERа

LIME2-SERVER is Linux server with only 2W consumption, A20-OLinuXino-LIME2 and option for HDD or SSD.

The server has bild-in LiPo battery which allow it to run for hours without external power supply, Gigabit Ethernet connection and power adapter 5V 2A.

Today we uploaded on GitHub the initial version of the user manual which explains how to assembly the boxes in case you didn’t bought it assembled.

Also basic instructions to use Ubuntu Bionic and Debian Buster images we provide.

KODI and NextCloud installation.

Additional info how to build and install Home Assistant, Yunohost, TOR server will be included in the next revision.

ESP32-DevKit-LiPo Open Source Hardware board GPIOs table and power consumption testings – in deep sleep the board uses only 65 uA

ESP32-DevKit-LiPo-GPIOs

Our ESP32-DevKit-LiPo board is pin to pin compatible with Espressif ESP32-DevKit, but we add to it LiPo battery charger, so the board can operate from LiPo battery like BATTERY-LiPo1400mAh

High resolution of the above GPIO map is available here.

Having LiPo backup power supply allow WiFi/BLE connected handheld devices to be created with ESP32-DevKit-LiPo.

In our new Revision B of this board which is on prototype stage:

If PWR_SENS_E1 jumper is shorted your software can monitor if external power supply is attached or you work on battery.

If BAT_SEND_E1 jumper is shorted your software can read battery voltage.

When operating on battery low power is necessary, so we optimized the design of Revision. C to reduce power consumption as much as possible and here are the results:

ESP32-DevKit-LiPo powered by Li-Po battery (no LED)

  • normal mode: 35mA +/-10%
  • deep sleep mode: 0.065mA +/-10%

ESP32-DevKit-LiPo powered by 5V USB (LED up)

  • normal mode: 35mA +/-10%
  • deep sleep mode: 2mA +/-10%

 

BC66 new firmware update fixes NETLIGHT bug

bc66

Our NB-IoT-Devkit popular platform is choice for many developers working on NB-IoT projects.

We got recently new firmware for BC66 which fix some bugs and add new functionality.

We are updating the firmware on all modules we have in stock now, but our customers who bought this board before can update their firmware with the image we placed on our ftp server.

Previous Older Entries