AgonLight2 now is officially certified by OSHWA as Open Source Hardware

AgonLight2 now is officially listed on OSHWA.org directory as true Open Source Hardware project.

ESP32-C3-DevKit-Lipo RISC-V development board with build in USB JTAG, WiFi, Bluetooth5, Lipo charger and 15 GPIOs

ESP32-C3-DevKit-Lipo is EUR 6.00 Open Source Hardware compact development board with:

  • RISC-V running on 160Mhz
  • 400KB RAM, 8K data RAM
  • 4MB Flash
  • Two headers (soldered) with power supply and GPIO signals
  • ESP-PROG-C compatible rescue connector (if you mess with bootloader)
  • USB-C for programming and JTAG debugging
  • LiPo battery charger allowing handheld applications with single LiPo battery
  • 4 mount holes

This is all you need to get started with RISC-V programming in C and Assembly.

Shteryana Shopova recently did RISC-V workshop with this board and explained how to setup your tools for programming and debugging. Here you can find her work.

A64-OLinuXino Open Source Hardware Linux computer is back in stock

All variants of the Open Source Hardware Linux computer A64-OLinuXino now are back in stock!

FOSDEM 2022 will be online event on February 5th and 6th

The biggest Free Libre Open Source Software and Open Source Hardware event in Europe – FOSDEM 2022 will be again online on February 5th and 6th. Check the devrooms and mark the talks you want to attend.

My talk will be in Computer Aided Modeling and Design devroom and I will speak about how we push the limits of KiCAD with our most complex OSHW board the iMX8QuadMax.

https://fosdem.org/2022/schedule/track/computer_aided_modeling_and_design/

There will be chat channel and I will be available to answer your questions.

Low Cost Open Source Hardware LoRa modules based on SX1276 are now in stock!

Open Source Hardware LoRa modules in two versions now are available for sale on our webshop:

868 Mhz is the free band for LoRa in Europe and we have six basic modules for this frequency.

LoRa868 is breadboard friendly and can be soldered directly on PCB or to be used on breadboard with headers.

LoRa868-ANT which includes +2dBi PCB antenna:

Created with GIMP

and LoRa868-EANT which includes +3dBi antenna for external panel mounting:

Created with GIMP

MOD-LoRa868 has UEXT plug connector and can be easily attached to any of our boards with UEXT connectors.

MOD-LoRa868-ANT and MOD-LoRa868-EANT variants are also available.

For North America 915Mhz is used. We have LoRa915, LoRa915-ANT, MOD-LoRa915, MOD-LoRa915-ANT.

At the moments we can’t offer EANT option for 915Mhz.

Allwinner plans to release Linux capable RISC-V SOC this year

Searching for more info about their new H313 SOC I found old news from August 2020, where Allwinner announce the development of AP SOC with RISC-V and praising Open Source Hardware and the open ISA of RISC-V.

They say in this announcement that they will have AP (application processor) SOC with RISC-V in 2021!

There is lot of development around RISC-V in the last years. Espressif have their ESP32-C3 which is with RISC-V SOC, but it can’t run Linux as has not enough memory and video. We still can’t see affordable silicon capable to run Linux.

There is announcement for BeagleBoneV but still not in production and at quite higher price compared to ARM boards on the market.

Allwinner is known to be able to design and produce low cost SOCs. Let’s hope the semiconductor crisis caused by Covid19 will not delay their plans.

So is the year 2021 when we will see $35 Linux running boards with RISC-V?

I’m crossing fingers!

As soon as we can get our hands to these SOC we will make OSHW OLinuXino with it!

OSHW design and affordable SOC will lead to affordable boards and boost of the software development of RISC-V too.

Source: Allwinner news.

Our most complex Open Source Hardware board made with KiCad – the octa core iMX8 Quad Max – Tukhla is completely routed and now on prototype production

The PCB routing of our most complex board – IMX8QM-Tukhla is complete and ready for first prototype build.

We started this project June-July 2020. Due to the Covid19 the development took 10 months although only 6 month of active work was done, due to lock downs, ill developers and so on troubles.

Now the board is completely routed and has these features:

Main SOC MIMX8QM5AVUFFAB which is member of iMX8 Quad Max series – the most powerful iMX8 SOC line from NXP.


MIMX8QM5AVUFFAB has 8 cores:

  • x2 Cortex-A72 running at 1.6Ghz
  • x4 Cortex-A53 running at 1.2Ghz
  • x2 Cortex-M4F running at 264Mhz

Memory:

  • 64-bit LPDDR4 @1600 MHz

Connectivity:

  • 1× PCIe (2-lanes)
  • 1× USB 3.0 with PHY
  • 1x USB 3.0 dual role with PHY
  • 1× SATA 3.0
  • 2× 1Gb Ethernet with AVB
  • 1× CAN/CAN-FD
  • 1x HDMI Rx

GPU:

  • 2xGC7000 XSVX
  • 16× Vec4 shaders with 64 execution units
  • Dual independent 8-Vec4 shader GPUs or a combined 16-Vec4 shader GPU
  • OpenGL 3.0, 2.1
  • OpenGL ES 3.2, 3.1 (with AEP), 3.0, 2.0, and 1.1
  • OpenCL 1.2 Full Profile and 1.1
  • OpenVG 1.1
  • Vulkan

VPU:

  • H.265 decode (4Kp60)
  • H.264 decode (4Kp30)
  • WMV9/VC-1 imple decode
  • MPEG 1 and 2 decode
  • AVS decodeMPEG4.2 ASP,
  • H.263, Sorenson Spark decode
  • Divx 3.11 including GMC decode
  • ON2/Google VP6/VP8 decode
  • RealVideo 8/9/10 decode
  • JPEG and MJPEG decode
  • 2× H.264 encode (1080p30)

Display:

  • Supports single UltraHD 4Kp60 display
  • or up to 4 independent FullHD 1080p60 displays
  • 2× MIPI-DSI with 4 lanes each
  • 1× HDMI-TX/DisplayPort
  • 2× LVDS Tx with 2 channels of 4 lanes each

Camera:

  • 2× MIPI-CSI with 4-lanes each, MIPI DPHYSM v1.

Security:

  • Advanced High Assurance Boot (AHAB) secure & encrypted boot

Operating temperature:

  • Automotive AEC-Q100 Grade 3 -40+125C

To the best of our knowledge there is no Open Source Board so far which to be so complex and advanced.

Now we are running the first prototypes and crossing fingers everything to work 🙂

With the current state of the semiconductor industry production will not be possible to be run soon.

Linux support will need attention as NXP has no mainline Linux for this SOC, but only Yocto build for old kernel (4.14.98_2.3.3).

If there are people with experience and interest in this SOC we may share one of the first samples we build, so they can help on the Linux support.

The schematic of IMX8QM-TUKHLA Revision A is uploaded for review on out ftp.

STMP157-OLinuXino-LIME2-IND status update April 2021

The last issues with STM32MP1 mainline Linux kernel support were resolved and now we run STMP157-OLinuXino-LIME2 in production!

Revision B fixes all hardware issues in the initial prototype. STMP157-OLINUXINO-LIME2 is complete analog of A20-OLinuXino-LIME2 which is one of our best selling Allwinner board.

Mainline uboot and Linux kernel 5.12 images are available with all periperials working.

We will have STMP157-OLINUXINO-LIME2 on our web for sale by the end of April.

This is also our first board with Ethernet supporting Precise Time Protocol and Time Sensitive Networking implemented.

Quad Core 64bit Open Source Hardware Linux computer A64-OLinuXino now have version with external antenna

A64-OLinuXino is Open Source Hardware Quad core 64 bit Linux Computer.

We also offer nice metal box for it named BOX-A64-BLACK:

The only problem was that A64-OLinuXino have option for on board WiFi-BT but it uses PCB antenna and when put in box the communication range was decreasing signiificantly.

New revision of A64-OLinuXino board now supports both internal PCB antenna and U.FL externally attached 2.4Ghz antenna.

So A64-OLinuXino can be put inside the metal box and have the antenna outside:

Open Source Hardware STMP1-OLinuXino-LIME2 industrial grade Linux computer update – Debian Buster and Ubuntu Focal with mainline Kernel 5.10.12 now supports almost everything

STMP1-OLinuXino-LIME2 Industrial grade Linux Computer project took us almost an year of work to build proper software support for our hardware with mainline uboot and kernel.

ST demo board uses Yocto with kernel 5.4, our images use Linux Kernel 5.10.12

These who monitor our Official images at https://images.olimex.com probably nottice that we already have images with Debian Buster and Ubuntu Focal for STM32MP1 where almost everything now work with mainline Linux Kernel 5.10.12.

  • We had lot of troubles around the Ethernet, but now it works pretty well!
  • CAN-FD – works!
  • Two USB High speed hosts with 1A current – works!
  • LCD – works
  • HDMI – works!
  • eMMC Flash boot – works!
  • PMU and LiPo charger battery support – works

Two things on this board left not complete:

  • low power modes
  • USB-OTG

New prototypes rev.B now are in production, the Chinese New Year will delay them to end of February. We hope meantime to solve these two last issues and run production.

UPDATE: As some people wanted to know what was the Ethernet issue we were struggling so long, I posted in the comment section.

For the USB-OTG my guess is that it’s also some silly issue so people may help:

STM32MP1 has two High speed USB hosts and one Full speed USB-OTG, here is snip from their Hardware development document:

Here is our schematic which follows above guide:

The two High Speed USB hosts work as expected, but the USB-OTG has issue summarized here: https://pastebin.com/i6G90kdg

What makes us a little bit suspicious is that STM in their own demo board didn’t follow their Hardware Guide and were wiring one of their High speed USB as OTG and connecting USB hub to the other, ignoring the Full speed USB at all.

Previous Older Entries