Allwinner plans to release Linux capable RISC-V SOC this year

Searching for more info about their new H313 SOC I found old news from August 2020, where Allwinner announce the development of AP SOC with RISC-V and praising Open Source Hardware and the open ISA of RISC-V.

They say in this announcement that they will have AP (application processor) SOC with RISC-V in 2021!

There is lot of development around RISC-V in the last years. Espressif have their ESP32-C3 which is with RISC-V SOC, but it can’t run Linux as has not enough memory and video. We still can’t see affordable silicon capable to run Linux.

There is announcement for BeagleBoneV but still not in production and at quite higher price compared to ARM boards on the market.

Allwinner is known to be able to design and produce low cost SOCs. Let’s hope the semiconductor crisis caused by Covid19 will not delay their plans.

So is the year 2021 when we will see $35 Linux running boards with RISC-V?

I’m crossing fingers!

As soon as we can get our hands to these SOC we will make OSHW OLinuXino with it!

OSHW design and affordable SOC will lead to affordable boards and boost of the software development of RISC-V too.

Source: Allwinner news.

Our most complex Open Source Hardware board made with KiCad – the octa core iMX8 Quad Max – Tukhla is completely routed and now on prototype production

The PCB routing of our most complex board – IMX8QM-Tukhla is complete and ready for first prototype build.

We started this project June-July 2020. Due to the Covid19 the development took 10 months although only 6 month of active work was done, due to lock downs, ill developers and so on troubles.

Now the board is completely routed and has these features:

Main SOC MIMX8QM5AVUFFAB which is member of iMX8 Quad Max series – the most powerful iMX8 SOC line from NXP.


MIMX8QM5AVUFFAB has 8 cores:

  • x2 Cortex-A72 running at 1.6Ghz
  • x4 Cortex-A53 running at 1.2Ghz
  • x2 Cortex-M4F running at 264Mhz

Memory:

  • 64-bit LPDDR4 @1600 MHz

Connectivity:

  • 1× PCIe (2-lanes)
  • 1× USB 3.0 with PHY
  • 1x USB 3.0 dual role with PHY
  • 1× SATA 3.0
  • 2× 1Gb Ethernet with AVB
  • 1× CAN/CAN-FD
  • 1x HDMI Rx

GPU:

  • 2xGC7000 XSVX
  • 16× Vec4 shaders with 64 execution units
  • Dual independent 8-Vec4 shader GPUs or a combined 16-Vec4 shader GPU
  • OpenGL 3.0, 2.1
  • OpenGL ES 3.2, 3.1 (with AEP), 3.0, 2.0, and 1.1
  • OpenCL 1.2 Full Profile and 1.1
  • OpenVG 1.1
  • Vulkan

VPU:

  • H.265 decode (4Kp60)
  • H.264 decode (4Kp30)
  • WMV9/VC-1 imple decode
  • MPEG 1 and 2 decode
  • AVS decodeMPEG4.2 ASP,
  • H.263, Sorenson Spark decode
  • Divx 3.11 including GMC decode
  • ON2/Google VP6/VP8 decode
  • RealVideo 8/9/10 decode
  • JPEG and MJPEG decode
  • 2× H.264 encode (1080p30)

Display:

  • Supports single UltraHD 4Kp60 display
  • or up to 4 independent FullHD 1080p60 displays
  • 2× MIPI-DSI with 4 lanes each
  • 1× HDMI-TX/DisplayPort
  • 2× LVDS Tx with 2 channels of 4 lanes each

Camera:

  • 2× MIPI-CSI with 4-lanes each, MIPI DPHYSM v1.

Security:

  • Advanced High Assurance Boot (AHAB) secure & encrypted boot

Operating temperature:

  • Automotive AEC-Q100 Grade 3 -40+125C

To the best of our knowledge there is no Open Source Board so far which to be so complex and advanced.

Now we are running the first prototypes and crossing fingers everything to work 🙂

With the current state of the semiconductor industry production will not be possible to be run soon.

Linux support will need attention as NXP has no mainline Linux for this SOC, but only Yocto build for old kernel (4.14.98_2.3.3).

If there are people with experience and interest in this SOC we may share one of the first samples we build, so they can help on the Linux support.

The schematic of IMX8QM-TUKHLA Revision A is uploaded for review on out ftp.

STMP157-OLinuXino-LIME2-IND status update April 2021

The last issues with STM32MP1 mainline Linux kernel support were resolved and now we run STMP157-OLinuXino-LIME2 in production!

Revision B fixes all hardware issues in the initial prototype. STMP157-OLINUXINO-LIME2 is complete analog of A20-OLinuXino-LIME2 which is one of our best selling Allwinner board.

Mainline uboot and Linux kernel 5.12 images are available with all periperials working.

We will have STMP157-OLINUXINO-LIME2 on our web for sale by the end of April.

This is also our first board with Ethernet supporting Precise Time Protocol and Time Sensitive Networking implemented.

Quad Core 64bit Open Source Hardware Linux computer A64-OLinuXino now have version with external antenna

A64-OLinuXino is Open Source Hardware Quad core 64 bit Linux Computer.

We also offer nice metal box for it named BOX-A64-BLACK:

The only problem was that A64-OLinuXino have option for on board WiFi-BT but it uses PCB antenna and when put in box the communication range was decreasing signiificantly.

New revision of A64-OLinuXino board now supports both internal PCB antenna and U.FL externally attached 2.4Ghz antenna.

So A64-OLinuXino can be put inside the metal box and have the antenna outside:

Open Source Hardware STMP1-OLinuXino-LIME2 industrial grade Linux computer update – Debian Buster and Ubuntu Focal with mainline Kernel 5.10.12 now supports almost everything

STMP1-OLinuXino-LIME2 Industrial grade Linux Computer project took us almost an year of work to build proper software support for our hardware with mainline uboot and kernel.

ST demo board uses Yocto with kernel 5.4, our images use Linux Kernel 5.10.12

These who monitor our Official images at https://images.olimex.com probably nottice that we already have images with Debian Buster and Ubuntu Focal for STM32MP1 where almost everything now work with mainline Linux Kernel 5.10.12.

  • We had lot of troubles around the Ethernet, but now it works pretty well!
  • CAN-FD – works!
  • Two USB High speed hosts with 1A current – works!
  • LCD – works
  • HDMI – works!
  • eMMC Flash boot – works!
  • PMU and LiPo charger battery support – works

Two things on this board left not complete:

  • low power modes
  • USB-OTG

New prototypes rev.B now are in production, the Chinese New Year will delay them to end of February. We hope meantime to solve these two last issues and run production.

UPDATE: As some people wanted to know what was the Ethernet issue we were struggling so long, I posted in the comment section.

For the USB-OTG my guess is that it’s also some silly issue so people may help:

STM32MP1 has two High speed USB hosts and one Full speed USB-OTG, here is snip from their Hardware development document:

Here is our schematic which follows above guide:

The two High Speed USB hosts work as expected, but the USB-OTG has issue summarized here: https://pastebin.com/i6G90kdg

What makes us a little bit suspicious is that STM in their own demo board didn’t follow their Hardware Guide and were wiring one of their High speed USB as OTG and connecting USB hub to the other, ignoring the Full speed USB at all.

LIME2-SHIELD adds CAN, second SD-card, two UEXT connectors, Audio IN and OUT, breadboard friendly GPIOs to A20-OLinuXino-LIME2 Open Source Hardware Linux computer

A20-OLinuXino-LIME2 is with small compact design, this is why we couldn’t put on it all connectors for the functionality this board offers.

The existing 0.05″ step connectors are OK for cables and shields, but are pain when you want to breadboard something or to attach UEXT module.

This is why we made LIME2-SHIELD open source hardware shield. It has these signals available:

LIME2-SHIELD User manual explains how to prepare your SD-card for booting Linux on A20-OLinuXino-LIME2, then how to setup the board with different scripts and device tree.

Demo codes how to work with GPIO, I2C, SPI, CAN with C, Python and console are included:

The work on our most complex Open Source Hardware Linux board started – meet the Tukhla iMX8QuadMax SOC based board to be designed with KiCAD

We started working on our most complex OSHW board with KiCAD.

iMX8 is broad range of very different ARM architectures under same name which some people may find quite confusing.
Here is the table chart:

You can see by yourself:

  • iMX8X is quite humble with up to x4 Cortex-A35+Cortex-M4F cores, something less capable than Allwinner A13 or STM32MP1XX
  • iMX8M, Nano/Mini/Plus is x4 Cortex-A53 + Cortex-A7/M4F something in the range of power of Allwinner A64
  • finally iMX8QuadMax comes with different configurations, but the high end is Octa-core with x2 Cortex-A72 + x4 Cortex-A53 + x2 Cortex-M4F and is more powerful than the popular Rockchip RK3399

Why we did started working on such monster?

Company from EU which values the OSHW recognized the absence of high end open source Linux board and asked us to design one. They offered to cover all associated design costs. They specially requested this to be not yet another RK3399 board, but based on SOC with proper documentation and software support. NXP’s high end iMX8QuadMax matched their requirements perfectly.

Currently all powerful Cortex-A72 comes from Chinese or Korean origin and are always closed projects, the only published info in best case is PDF schematic which can’t be verified i.e. the final product may or may not match what they publish. The popular Raspberry Pi go even further and their “schemaitcs” are just connector diagrams.

This is how the Tukhla project was born, it will have:

  • MIMX8QM5AVUFFAB Octa-core SOC with: ( x2 Cortex-A72, x4 Cortex-A53, x2 Cortex-M4F, x4 GPUs with 16 Vec4-Shader GPU, 32 compute units OpenGL® ES 3.2 and Vulkan® support Tessellation and Geometry Shading, Split-GPU architecture enables 2x 8 Shader Cores, 4k h.265 Decode, 1080p h.264 encode)
  • x2 LPDDR4 x32 databus RAM memory with up to 16GB of RAM configuration
  • PMU taking all power lines from single 12V/4A source
  • micro SD card
  • eMMC Flash with differnt sizes
  • QSPI Flash
  • x1 SATA for external HDD/SSD drives
  • x2 single lane PCIe with M2 connectors for NVMe
  • HDMI input 1.4 RX with HDCP 2.2
  • HDMI output 2.0 TX with HDCP 2.2 4K
  • USB 2.0 OTG
  • USB 3.0 HOST
  • x2 Gigabit Ethernet
  • x2 MIPI CSI camera connectors

The price of MIMX8QM5AVUFFAB alone is around EUR 100 in small quantities and currently LPDDR4 4GB cost EUR 35, LPDDR4 8GB cost EUR 50, LPDDR4 16GB cost EUR 180.

So with BOM over EUR 200 this board will not be affordable for the most of Raspberry Pi $35 price range users.

This board targets professionals, who need high performance board and being not dependent by Chinese SOC vendors. With all hardware open, which gives them security for their business as the design is public.

iMX8QuadMax SOC is available in automotive AEC-Q100 Grade 3 (-40° to 125° C Tj), Industrial (-40° to 105° C Tj), Consumer (-20° to 105° C Tj)

Some of the features like HDMI input are not present in the Chinese SOCs at all.

iMX8QuadMax may have DSP and incorporate Vision and Speech Recognition interactivity via a powerful vision pipeline and audio processing subsystem.

The Software support include: Android™, Linux®, FreeRTOS, QNX™, Green Hills®, Dornerworks XEN™.

iMX8QuadMax is fully supported on NXP’s 10 and 15-year Longevity Program

Tukhla means Brick in Bulgarian (and other Slavish languages) and it will be the OSHW building block for whole range of different solutions.

How long it will take to finish this design?

We honestly don’t know. It took more than month just to capture the schematic in the state it is now:

There is long path now to create and verify all component packages (just the SOC is in 1313 BGA ball package), verify the schematic signals, place the components on the PCB, route high speed signals manually.

It may be 6 months or more. We got unofficial info that NXP engineers spent more than year to make the NXP iMX8QMax demo board.

GNUHealth Open Source Project runs on Open Source Hardware OLinuXino-LIME2

GNU Health is a Free/Libre project for health practitioners, health institutions and governments. It provides the functionality of Electronic Medical Record (EMR), Hospital Management (HMIS) and Health Information System (HIS).
GNU Health is an official GNU package, part of the GNU System.

Luis Falcón, MD, started the GNU Health project in 2008 to improve Primary Health Care (PHC) in rural communities.
Today GNU Health has grown to a full Health and Hospital Information.

The GNU Health Federation allows the establishment of nationwide federated networks with thousands of heterogeneous nodes. The GNU Health federation is revolutionary, and will allow the community, the health practitioners, the research institutions and the ministries of health to have much better perspective and precise information on the individuals and their context.

GNU Health in a Box is GNU Health running on small Single Board Computer. The first image was released for Raspberry Pi, which is the most popular Linux SBC, but we are happy that Open Source Hardware OLinuXino was noticed by the GNU Health project and there is some preliminary work to port the GNU Health to work on OLinuXino-LIME2.

Embedded GNU Health in a Box provides real-time monitoring of vital signs in hospital settings, retrieves information from laboratory instruments or can be a great Personal Health tracker. They are also a great resource for research and academic institutions.

Open Source Software OpenMQTTGateway got initial support for Open Source Hardware ESP32-GATEWAY

OpenMQTTGateway project aims to concentrate in one Gateway different technologies like Bluetooth, LoRa, IR, lagacy RF 433/315, GSM/GPRS based devices and connect them with OpenHAB, Home Assistant, Jeedom, FHEM, Domotic etc platforms via MQTT protocol.

The list of the supported devices is long.

With recent PR initial support for ESP32-GATEWAY is add.

PIC32-Pinguino Open Source hardware board is on the cover of Electronic music vinyl

Screenshot from 2020-05-18 09-00-50

We got note from friend that our PIC32-Pinguino is on the cover of Belgium artists Phillipi & Rodrigo – “Gueto De Gent” Vinyl album. The genre is Electronic/Disco. You can hear it here:

 

Maybe the authors are also Makers and like to make electronic projects?

 

Previous Older Entries