Allwinner plans to release Linux capable RISC-V SOC this year

Searching for more info about their new H313 SOC I found old news from August 2020, where Allwinner announce the development of AP SOC with RISC-V and praising Open Source Hardware and the open ISA of RISC-V.

They say in this announcement that they will have AP (application processor) SOC with RISC-V in 2021!

There is lot of development around RISC-V in the last years. Espressif have their ESP32-C3 which is with RISC-V SOC, but it can’t run Linux as has not enough memory and video. We still can’t see affordable silicon capable to run Linux.

There is announcement for BeagleBoneV but still not in production and at quite higher price compared to ARM boards on the market.

Allwinner is known to be able to design and produce low cost SOCs. Let’s hope the semiconductor crisis caused by Covid19 will not delay their plans.

So is the year 2021 when we will see $35 Linux running boards with RISC-V?

I’m crossing fingers!

As soon as we can get our hands to these SOC we will make OSHW OLinuXino with it!

OSHW design and affordable SOC will lead to affordable boards and boost of the software development of RISC-V too.

Source: Allwinner news.

Quad Core 64bit Open Source Hardware Linux computer A64-OLinuXino now have version with external antenna

A64-OLinuXino is Open Source Hardware Quad core 64 bit Linux Computer.

We also offer nice metal box for it named BOX-A64-BLACK:

The only problem was that A64-OLinuXino have option for on board WiFi-BT but it uses PCB antenna and when put in box the communication range was decreasing signiificantly.

New revision of A64-OLinuXino board now supports both internal PCB antenna and U.FL externally attached 2.4Ghz antenna.

So A64-OLinuXino can be put inside the metal box and have the antenna outside:

Open Source Hardware S3-OLinuXino update – The new board targeting industrial vision applications is now with mainline Linux support

S3-OLinuXino is board we create to may add vision to the PTH components Soldering Robot we are working on for some time.

Revision.B now is a bit different than the first prototype we made. It has these features:

  • S3 SOC Cortex-A7 running at 1.2Ghz
  • 1Gb DDR3 RAM inside S3 SOC up to 1333Mhz
  • MIPI Raspberry Pi camera interface up to 8Mpix camera support
  • Parallel CSI camera interface up to 8 Mpix
  • Power Management Unit with LiPo battery charger and step-up to allow stand alone battery operation
  • 100Mb Ethernet interface with POE support (external optional module)
  • SPI, NAND, eMMC external optional module
  • LCD connector to connect to LCD-OLinuXino displays with different sizes and resolutions
  • LiPo battery connector
  • USB-OTG interface
  • UEXT connector with SPI, I2C, Serial and power supply
  • EXT1 connector for LED PWM lighting
  • audio input with microphone
  • audio output
  • WiFi and BT module with external antenna
  • micro SD card connector

We are working to offer Mainline Linux with this board.
Bootlin got sample board and have working MIPI driver.

S3-OLinuXino can take power from USB, LiPo battery or PoE (with optional PoE module).

Different NAND Flash, SPI Flash, eMMC flash options are possible with addon module

The only thing we still didn’t complete is USB-OTG functionality.

Mass production is planned for March 2021.

Happy New Year 2021! New board updates

Happy New Year! Olimex team wish you health and best of luck in the new 2021. Let all troubles from 2020 go away!

Update on UK shipping:

Brexit brings some troubles for trade with UK. We stopped the shipping to UK on December 23 2020 as we didn’t know how to handle the orders when we are back on January 4th.

When we got back in office we had expected news: The couriers raised their prices with almost 50% due to the extra efforts around the new UK regulations, but this was just the beginning.

From January 1st 2021 all shipments to UK with value under GBP 135 must be with included charged VAT. For this purpose all online shops which ships to UK must register for UK customs EORI and UK VAT-ID. They have to charge the VAT at the time of shipping and to pay to UK government all collected VAT at the end of the month. The shipments above GBP 135 are shipped with export declaration and without VAT as for any other countries outside EU.

The big platforms like Amazon, ebay etc. also need to register (probably they already did) and collect the VAT from their sellers.

We still not have EORI neither UK VAT-ID so we can’t ship small orders. Orders above EUR 200 are processed normally. We are sorry for this inconvenience and apologise to all our small UK customers.

Update on current boards:

iMX8Qmax board high speed signals are completely routed, we now make the connector arrangements on the PCB and hope to be ready for prototypes in March.

S3-OLinuXino revision B of the board prototypes works great. Bootlin reported that their mainline driver for CSI2 work with RaspberryPi IMX219 8 Mpix camera, CSI1 is with OV2640 2Mpix camera connector. Gigabit ethernet, Audio microphone, PoE option, eMMC/SPI Flash option, etc all are tested and work fine. We are making now final touch ups and will run production.

STMP1-SOM small module with STM32MP151/3/7 is on prototype Revision B and everything exept the Audio is working fine. Production will follow in March.

STMP1-OLinuXino-LIME2 is stuck at Gigabit Ethernet. We had many other issues which were solved, but this remains. The original ST design uses RTL8211 which is commercial grade, we put KSZ9031RNXIC-TR instead and there is neither correctly sent neither correctly received package. We use this chip in Allwinner A20 and A64 designs without problems. We used all combinations of delays of the clocks and singnals etc with no luck. Our guess is the port hardware drivers are somehow incompatible with this PHY and are either slow either make rings which confuse the PHY chip. If someone has more knowledge and can help, we can send board.

Building Marine Chartplotter with A20-OLinuXino-LIME and LCD-OLinuXino-7 in metal frame

Matthias sent us link to his project of Marine Chartplotter made with A20-OLinuXino-LIME open source hardware Linux computer + LCD-OLinuXino-7 and LCD7-METAL-FRAME

The power supply is done with DCDC-36-5-12

Driving High voltage loads with optoisolated 220VAC/16A switch by Arduino and OLinuXino

eduArdu is educational low cost Arduino board, it has plenty of resources like: LED 8×8 display, Joystick, Buzzer, Microphone, temperature sensor, Ultrasound distance meter, PIR sensor, IR emitter and receiver, Capacitive buttons, RGB LED, Lipo charger for stand alone work.

Here we will show you how you can drive high voltage loads like lamps, heaters etc with PWR-SWITCH connected to eduArdu.

Plug PWR-SWITCH in mains and the object you want to control plug in PWR-SWITCH receptacle.

Then connect “-” termianl of PWR-SWITCH input to eduArdu UEXT.pin2 and “+” terminal of PWR-SWITCH input to eduArdu UEXT.pin4.

In Arduino IDE make this program:

void setup() {
   pinMode(0, OUTPUT);
}
// the loop function runs over and over again forever
void loop() {
   digitalWrite(0, HIGH); // turn the PWR-SWITCH on
   delay(5000); // wait for a 5 seconds
   digitalWrite(0, LOW); // turn the PWR-SWITCH on
   delay(5000); // wait for a 5 seconds
}

The Lamp will start to blink 5 seconds on and 5 seconds off.

You can drive high voltage loads with A20-OLinuXino-LIME2 + LIME2-SHIELD:

In this setup connect “-” termianl of PWR-SWITCH input to LIME2-SHIELD GPIO.pin9 and “+” terminal of PWR-SWITCH input to LIME2-SHIELD GPIO.pin7 (GPIO271 in Linux) and you can use this code to switch on and off PWR-SWITCH:

echo 271 > /sys/class/gpio/export
echo out > /sys/class/gpio/gpio271/direction

echo 1 > /sys/class/gpio/gpio271/value

echo 0 > /sys/class/gpio/gpio271/value

or you can use Python and pyA20LIME2:

!/usr/bin/env python
from pyA20Lime2.gpio import gpio
from pyA20Lime2.gpio import port
from pyA20Lime2.gpio import connector
gpio.init() #Initialize module. Always called first
gpio.setcfg(port.PI15, gpio.OUTPUT)

gpio.output(port.PI15, gpio.HIGH)
gpio.output(port.PI15, gpio.LOW)

Allwinner keep their promise for long term supply of T2 (industrial A20) SOC. If you wonder how 60K of Allwinner T2 SOC looks like you can see now

T2 is the industrial version of A20 – the most successful SOC in Allwinner history. It keeps selling for more than 8 years now and demand is steady.

We are proud that our OSHW designs with A20 are part of this success story.

T2 can work in extended temperature grade and is more expensive than A20, so the demand is not so big and used just by specific customers like in automotive and industrial equipment. During the last COVID-19 economy slow down these customers decreased and Allwinner stock of T2 was sold out. While NXP, ST etc always keep some kind of guarantee that they will produce this processor for XX years, Chinese companies are practical, they sell as long as it’s profitable for them and if demand is low they just stop.

This is why many people are afraid to place Chinese SOC in their products, they are afraid that this chip may stop being produced at some point of time and their design need to be changed.

Fortunately for Olimex our sales are big enough to be interesting and supported by Allwinner. We have enough business to place custom orders even for chips which are now with status “obsolete” and Allwinner keep producing them for us.

T2 automotive/industrial market for Allwinner now is not big enough for them to justify keeping it in stock, but Olimex placed order for these in January and 60Kpcs hit our warehouse few weeks ago.

The label show these T2 SOC are manufactured 18 of May 2020 🙂

So Allwinner keeps their part of the deal for long term delivery and manufacture for us even SOCs which are not available for sale officially, this means we can keep producing our boards with Allwinner SOC for our customers and they are safe with us.

The Open Source Hardware OLinuXino boards are with new Linux Kernel 5.6 scripts to move Linux OS to eMMC or SATA are included

We are pleased to announce that now the images at http://images.olimex.com/release/ are with the lates Linux Kernel 5.6

All these are build with our Olimage script.

We still keep Ubuntu Bionic 18.04 LTS distribution and didn’t move to 20.04 LTS yet.

To addition for script which set boot from eMMC we add new one which allow you to boot from SATA.

The boot from eMMC and SATA is enabled for OLinuXino boards which has SPI Flash on them like:

  • A20-OLinuXino-LIME-e16Gs16M
  • A20-OLinuXino-LIME-e4Gs16M
  • A20-OLinuXino-LIME-s16M
  • T2-OLinuXino-LIME-e8Gs16M-IND
  • T2-OLinuXino-LIME-s16M-IND
  • A20-OLinuXino-LIME2-e16Gs16M
  • A20-OLinuXino-LIME2-e4Gs16M
  • A20-OLinuXino-LIME2-s16M
  • T2-OLinuXino-LIME2-e8Gs16M-IND
  • T2-OLinuXino-LIME2-s16M-IND
  • A20-OLinuXino-MICRO-e16Gs16M
  • A20-OLinuXino-MICRO-e4Gs16M
  • A20-OLinuXino-MICRO-s16M
  • T2-OLinuXino-MICRO-e8Gs16M-IND
  • T2-OLinuXino-MICRO-s16M-IND
  • A20-SOM-e16Gs16M
  • T2-SOM-e8Gs16M-IND
  • A20-SOM204-1Gs16Me16G-MC
  • T2-SOM204-1Gs16Me4G-C-I
  • T2-SOM204-1Gs16Me8G-MC-I

To make board booting from eMMC you have to boot from SD-card then execute:

$ sudo olinuxino-sd-to-emmc

then wait until script moves the OS to eMMC, remove the SD-card and reboot.

Similar if you want to make board boot from SATA you have to boot from SD-card then execute:

$ sudo olinuxino-sd-to-sata

Olimage – Mainline Linux images building script for all of our OLinuXino and SOM boards

DEBIANubuntu_904

We work for more than 6 month on our own Linux building script and now we are ready with it’s initial release, which is now on GitHub .

Why do we need it? The number of our boards with all variant hit over 70 pcs when you add to them the different LCD combinations and other peripherials the support and test of these images became little hell. Our latest Armbian based image was released 3-4 months ago as we didn’t manage to properly test all board features in the newer images.

So we first made universal images for all our groups of boards (based on the SOC used) and EEPROM where we store info so uboot and kernel to may recognize the board and configure properly the parameters at boot time.

Then we decided to make one-for-all build script which will automatically build images with recent kernel and uboot automatically.

We had to leave Armbian as we wanted things to be more under our control and decision. Also we wanted everything to be 100% tested when released. Armbian official builds are not tested at hardware level other than to see board boots, so many boards are with peripheral conflicts and we had to apply our patched on Armbian anyway to adjust the images for our boards.

Our official images now are at http://images.olimex.com.

There is release folder where we have minimal and basic images for Debian and Ubuntu and testing folder where new uboot and kernel images will be built and kept until properly tested. For instance Ubuntu 20.04 LTS and kernel 5.6 images will be put there in the next couple of weeks.

The Olimage script and repositories are developed in our internal Gitlab and will be only push to Github when everything is properly tested and images moved to release folder. Also we push all our patches upstream.

With the current kernel and uboot users can easily generate any Linux distribution as it’s matter of building rootfs.

Moving to the next release would be possible simple by

sudo apt-get update && apt-get dist-upgrade

then re-boot of the board, so when we release new images all you have to do is to run the above commands and you will have the latest images.

For the moments the builder has A10, A13, A20, A64.

iMX233 and RK3188 SOCs are obsolete and not produced anymore by Rockchip and NXP, so they will be not included in the script. We still produce and sell these boards, but they will be discontinued when we use our existing SOC stock.

AM3352-SOM and AM3359-SOM will be included in the script, but we have no fixed date when, as we have to put earlier S3-OLinuXino and STMP1-OLinuXino-LIME2 which are with higher priority.

Open Source Hardware LIME2-SERVER user manual is uploaded and explains how to assembly and how to install Linux images of popular projects

LIME2-SERVERĐ°

LIME2-SERVER is Linux server with only 2W consumption, A20-OLinuXino-LIME2 and option for HDD or SSD.

The server has bild-in LiPo battery which allow it to run for hours without external power supply, Gigabit Ethernet connection and power adapter 5V 2A.

Today we uploaded on GitHub the initial version of the user manual which explains how to assembly the boxes in case you didn’t bought it assembled.

Also basic instructions to use Ubuntu Bionic and Debian Buster images we provide.

KODI and NextCloud installation.

Additional info how to build and install Home Assistant, Yunohost, TOR server will be included in the next revision.

Previous Older Entries